aboutsummaryrefslogtreecommitdiff
path: root/target/hppa/mem_helper.c
blob: 08abd1a9f90ef3036ccd4d6e6efbb96ee2e3c27e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/*
 *  HPPA memory access helper routines
 *
 *  Copyright (c) 2017 Helge Deller
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "hw/core/cpu.h"
#include "trace.h"

hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr)
{
    /*
     * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes
     * an algorithm in which a 62-bit absolute address is transformed to
     * a 64-bit physical address.  This must then be combined with that
     * pictured in Figure H-11 "Physical Address Space Mapping", in which
     * the full physical address is truncated to the N-bit physical address
     * supported by the implementation.
     *
     * Since the supported physical address space is below 54 bits, the
     * H-8 algorithm is moot and all that is left is to truncate.
     */
    QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54);
    return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS);
}

hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr)
{
    /*
     * See Figure H-10, "Absolute Accesses when PSW W-bit is 0",
     * combined with Figure H-11, as above.
     */
    if (likely(extract32(addr, 28, 4) != 0xf)) {
        /* Memory address space */
        addr = (uint32_t)addr;
    } else if (extract32(addr, 24, 4) != 0) {
        /* I/O address space */
        addr = (int32_t)addr;
    } else {
        /* PDC address space */
        addr &= MAKE_64BIT_MASK(0, 24);
        addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4);
    }
    return addr;
}

static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
{
    IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr);

    if (i) {
        HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
        trace_hppa_tlb_find_entry(env, ent, ent->entry_valid,
                                  ent->itree.start, ent->itree.last, ent->pa);
        return ent;
    }
    trace_hppa_tlb_find_entry_not_found(env, addr);
    return NULL;
}

static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent,
                               bool force_flush_btlb)
{
    CPUState *cs = env_cpu(env);
    bool is_btlb;

    if (!ent->entry_valid) {
        return;
    }

    trace_hppa_tlb_flush_ent(env, ent, ent->itree.start,
                             ent->itree.last, ent->pa);

    tlb_flush_range_by_mmuidx(cs, ent->itree.start,
                              ent->itree.last - ent->itree.start + 1,
                              HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS);

    /* Never clear BTLBs, unless forced to do so. */
    is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)];
    if (is_btlb && !force_flush_btlb) {
        return;
    }

    interval_tree_remove(&ent->itree, &env->tlb_root);
    memset(ent, 0, sizeof(*ent));

    if (!is_btlb) {
        ent->unused_next = env->tlb_unused;
        env->tlb_unused = ent;
    }
}

static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e)
{
    IntervalTreeNode *i, *n;

    i = interval_tree_iter_first(&env->tlb_root, va_b, va_e);
    for (; i ; i = n) {
        HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);

        /*
         * Find the next entry now: In the normal case the current entry
         * will be removed, but in the BTLB case it will remain.
         */
        n = interval_tree_iter_next(i, va_b, va_e);
        hppa_flush_tlb_ent(env, ent, false);
    }
}

static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env)
{
    HPPATLBEntry *ent = env->tlb_unused;

    if (ent == NULL) {
        uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
        uint32_t i = env->tlb_last;

        if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) {
            i = btlb_entries;
        }
        env->tlb_last = i + 1;

        ent = &env->tlb[i];
        hppa_flush_tlb_ent(env, ent, false);
    }

    env->tlb_unused = ent->unused_next;
    return ent;
}

int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
                              int type, hwaddr *pphys, int *pprot,
                              HPPATLBEntry **tlb_entry)
{
    hwaddr phys;
    int prot, r_prot, w_prot, x_prot, priv;
    HPPATLBEntry *ent;
    int ret = -1;

    if (tlb_entry) {
        *tlb_entry = NULL;
    }

    /* Virtual translation disabled.  Map absolute to physical.  */
    if (MMU_IDX_MMU_DISABLED(mmu_idx)) {
        switch (mmu_idx) {
        case MMU_ABS_W_IDX:
            phys = hppa_abs_to_phys_pa2_w1(addr);
            break;
        case MMU_ABS_IDX:
            if (hppa_is_pa20(env)) {
                phys = hppa_abs_to_phys_pa2_w0(addr);
            } else {
                phys = (uint32_t)addr;
            }
            break;
        default:
            g_assert_not_reached();
        }
        prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        goto egress;
    }

    /* Find a valid tlb entry that matches the virtual address.  */
    ent = hppa_find_tlb(env, addr);
    if (ent == NULL) {
        phys = 0;
        prot = 0;
        ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
        goto egress;
    }

    if (tlb_entry) {
        *tlb_entry = ent;
    }

    /* We now know the physical address.  */
    phys = ent->pa + (addr - ent->itree.start);

    /* Map TLB access_rights field to QEMU protection.  */
    priv = MMU_IDX_TO_PRIV(mmu_idx);
    r_prot = (priv <= ent->ar_pl1) * PAGE_READ;
    w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE;
    x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC;
    switch (ent->ar_type) {
    case 0: /* read-only: data page */
        prot = r_prot;
        break;
    case 1: /* read/write: dynamic data page */
        prot = r_prot | w_prot;
        break;
    case 2: /* read/execute: normal code page */
        prot = r_prot | x_prot;
        break;
    case 3: /* read/write/execute: dynamic code page */
        prot = r_prot | w_prot | x_prot;
        break;
    default: /* execute: promote to privilege level type & 3 */
        prot = x_prot;
        break;
    }

    /* access_id == 0 means public page and no check is performed */
    if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) {
        /* If bits [31:1] match, and bit 0 is set, suppress write.  */
        int match = ent->access_id * 2 + 1;

        if (match == env->cr[CR_PID1] || match == env->cr[CR_PID2] ||
            match == env->cr[CR_PID3] || match == env->cr[CR_PID4]) {
            prot &= PAGE_READ | PAGE_EXEC;
            if (type == PAGE_WRITE) {
                ret = EXCP_DMPI;
                goto egress;
            }
        }
    }

    /* No guest access type indicates a non-architectural access from
       within QEMU.  Bypass checks for access, D, B and T bits.  */
    if (type == 0) {
        goto egress;
    }

    if (unlikely(!(prot & type))) {
        /* The access isn't allowed -- Inst/Data Memory Protection Fault.  */
        ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
        goto egress;
    }

    /* In reverse priority order, check for conditions which raise faults.
       As we go, remove PROT bits that cover the condition we want to check.
       In this way, the resulting PROT will force a re-check of the
       architectural TLB entry for the next access.  */
    if (unlikely(!ent->d)) {
        if (type & PAGE_WRITE) {
            /* The D bit is not set -- TLB Dirty Bit Fault.  */
            ret = EXCP_TLB_DIRTY;
        }
        prot &= PAGE_READ | PAGE_EXEC;
    }
    if (unlikely(ent->b)) {
        if (type & PAGE_WRITE) {
            /* The B bit is set -- Data Memory Break Fault.  */
            ret = EXCP_DMB;
        }
        prot &= PAGE_READ | PAGE_EXEC;
    }
    if (unlikely(ent->t)) {
        if (!(type & PAGE_EXEC)) {
            /* The T bit is set -- Page Reference Fault.  */
            ret = EXCP_PAGE_REF;
        }
        prot &= PAGE_EXEC;
    }

 egress:
    *pphys = phys;
    *pprot = prot;
    trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
    return ret;
}

hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
    HPPACPU *cpu = HPPA_CPU(cs);
    hwaddr phys;
    int prot, excp, mmu_idx;

    /* If the (data) mmu is disabled, bypass translation.  */
    /* ??? We really ought to know if the code mmu is disabled too,
       in order to get the correct debugging dumps.  */
    mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX :
               cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX);

    excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0,
                                     &phys, &prot, NULL);

    /* Since we're translating for debugging, the only error that is a
       hard error is no translation at all.  Otherwise, while a real cpu
       access might not have permission, the debugger does.  */
    return excp == EXCP_DTLB_MISS ? -1 : phys;
}

G_NORETURN static void
raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr,
                         vaddr addr, bool mmu_disabled)
{
    CPUState *cs = env_cpu(env);

    cs->exception_index = excp;

    if (env->psw & PSW_Q) {
        /*
         * For pa1.x, the offset and space never overlap, and so we
         * simply extract the high and low part of the virtual address.
         *
         * For pa2.0, the formation of these are described in section
         * "Interruption Parameter Registers", page 2-15.
         */
        env->cr[CR_IOR] = (uint32_t)addr;
        env->cr[CR_ISR] = addr >> 32;

        if (hppa_is_pa20(env)) {
            if (mmu_disabled) {
                /*
                 * If data translation was disabled, the ISR contains
                 * the upper portion of the abs address, zero-extended.
                 */
                env->cr[CR_ISR] &= 0x3fffffff;
            } else {
                /*
                 * If data translation was enabled, the upper two bits
                 * of the IOR (the b field) are equal to the two space
                 * bits from the base register used to form the gva.
                 */
                uint64_t b;

                cpu_restore_state(cs, retaddr);

                b = env->gr[env->unwind_breg];
                b >>= (env->psw & PSW_W ? 62 : 30);
                env->cr[CR_IOR] |= b << 62;

                cpu_loop_exit(cs);
            }
        }
    }
    cpu_loop_exit_restore(cs, retaddr);
}

bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
                       MMUAccessType type, int mmu_idx,
                       bool probe, uintptr_t retaddr)
{
    HPPACPU *cpu = HPPA_CPU(cs);
    CPUHPPAState *env = &cpu->env;
    HPPATLBEntry *ent;
    int prot, excp, a_prot;
    hwaddr phys;

    switch (type) {
    case MMU_INST_FETCH:
        a_prot = PAGE_EXEC;
        break;
    case MMU_DATA_STORE:
        a_prot = PAGE_WRITE;
        break;
    default:
        a_prot = PAGE_READ;
        break;
    }

    excp = hppa_get_physical_address(env, addr, mmu_idx,
                                     a_prot, &phys, &prot, &ent);
    if (unlikely(excp >= 0)) {
        if (probe) {
            return false;
        }
        trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);

        /* Failure.  Raise the indicated exception.  */
        raise_exception_with_ior(env, excp, retaddr, addr,
                                 MMU_IDX_MMU_DISABLED(mmu_idx));
    }

    trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
                                phys & TARGET_PAGE_MASK, size, type, mmu_idx);

    /*
     * Success!  Store the translation into the QEMU TLB.
     * Note that we always install a single-page entry, because that
     * is what works best with softmmu -- anything else will trigger
     * the large page protection mask.  We do not require this,
     * because we record the large page here in the hppa tlb.
     */
    tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
                 prot, mmu_idx, TARGET_PAGE_SIZE);
    return true;
}

/* Insert (Insn/Data) TLB Address.  Note this is PA 1.1 only.  */
void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
{
    HPPATLBEntry *ent;

    /* Zap any old entries covering ADDR. */
    addr &= TARGET_PAGE_MASK;
    hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1);

    ent = env->tlb_partial;
    if (ent == NULL) {
        ent = hppa_alloc_tlb_ent(env);
        env->tlb_partial = ent;
    }

    /* Note that ent->entry_valid == 0 already.  */
    ent->itree.start = addr;
    ent->itree.last = addr + TARGET_PAGE_SIZE - 1;
    ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
    trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
}

static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent,
                                 target_ulong reg)
{
    ent->access_id = extract32(reg, 1, 18);
    ent->u = extract32(reg, 19, 1);
    ent->ar_pl2 = extract32(reg, 20, 2);
    ent->ar_pl1 = extract32(reg, 22, 2);
    ent->ar_type = extract32(reg, 24, 3);
    ent->b = extract32(reg, 27, 1);
    ent->d = extract32(reg, 28, 1);
    ent->t = extract32(reg, 29, 1);
    ent->entry_valid = 1;

    interval_tree_insert(&ent->itree, &env->tlb_root);
    trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
                         ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
}

/* Insert (Insn/Data) TLB Protection.  Note this is PA 1.1 only.  */
void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
{
    HPPATLBEntry *ent = env->tlb_partial;

    if (ent) {
        env->tlb_partial = NULL;
        if (ent->itree.start <= addr && addr <= ent->itree.last) {
            set_access_bits_pa11(env, ent, reg);
            return;
        }
    }
    qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
}

static void itlbt_pa20(CPUHPPAState *env, target_ulong r1,
                       target_ulong r2, vaddr va_b)
{
    HPPATLBEntry *ent;
    vaddr va_e;
    uint64_t va_size;
    int mask_shift;

    mask_shift = 2 * (r1 & 0xf);
    va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift;
    va_b &= -va_size;
    va_e = va_b + va_size - 1;

    hppa_flush_tlb_range(env, va_b, va_e);
    ent = hppa_alloc_tlb_ent(env);

    ent->itree.start = va_b;
    ent->itree.last = va_e;

    /* Extract all 52 bits present in the page table entry. */
    ent->pa = r1 << (TARGET_PAGE_BITS - 5);
    /* Align per the page size. */
    ent->pa &= TARGET_PAGE_MASK << mask_shift;
    /* Ignore the bits beyond physical address space. */
    ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS);

    ent->t = extract64(r2, 61, 1);
    ent->d = extract64(r2, 60, 1);
    ent->b = extract64(r2, 59, 1);
    ent->ar_type = extract64(r2, 56, 3);
    ent->ar_pl1 = extract64(r2, 54, 2);
    ent->ar_pl2 = extract64(r2, 52, 2);
    ent->u = extract64(r2, 51, 1);
    /* o = bit 50 */
    /* p = bit 49 */
    ent->access_id = extract64(r2, 1, 31);
    ent->entry_valid = 1;

    interval_tree_insert(&ent->itree, &env->tlb_root);
    trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
    trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u,
                         ent->ar_pl2, ent->ar_pl1, ent->ar_type,
                         ent->b, ent->d, ent->t);
}

void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
{
    vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]);
    itlbt_pa20(env, r1, r2, va_b);
}

void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
{
    vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]);
    itlbt_pa20(env, r1, r2, va_b);
}

/* Purge (Insn/Data) TLB. */
static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
{
    CPUHPPAState *env = cpu_env(cpu);
    vaddr start = data.target_ptr;
    vaddr end;

    /*
     * PA2.0 allows a range of pages encoded into GR[b], which we have
     * copied into the bottom bits of the otherwise page-aligned address.
     * PA1.x will always provide zero here, for a single page flush.
     */
    end = start & 0xf;
    start &= TARGET_PAGE_MASK;
    end = (vaddr)TARGET_PAGE_SIZE << (2 * end);
    end = start + end - 1;

    hppa_flush_tlb_range(env, start, end);
}

/* This is local to the current cpu. */
void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr)
{
    trace_hppa_tlb_ptlb_local(env);
    ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr));
}

/* This is synchronous across all processors.  */
void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
{
    CPUState *src = env_cpu(env);
    CPUState *cpu;
    bool wait = false;

    trace_hppa_tlb_ptlb(env);
    run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);

    CPU_FOREACH(cpu) {
        if (cpu != src) {
            async_run_on_cpu(cpu, ptlb_work, data);
            wait = true;
        }
    }
    if (wait) {
        async_safe_run_on_cpu(src, ptlb_work, data);
    } else {
        ptlb_work(src, data);
    }
}

void hppa_ptlbe(CPUHPPAState *env)
{
    uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
    uint32_t i;

    /* Zap the (non-btlb) tlb entries themselves. */
    memset(&env->tlb[btlb_entries], 0,
           sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0]));
    env->tlb_last = btlb_entries;
    env->tlb_partial = NULL;

    /* Put them all onto the unused list. */
    env->tlb_unused = &env->tlb[btlb_entries];
    for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) {
        env->tlb[i].unused_next = &env->tlb[i + 1];
    }

    /* Re-initialize the interval tree with only the btlb entries. */
    memset(&env->tlb_root, 0, sizeof(env->tlb_root));
    for (i = 0; i < btlb_entries; ++i) {
        if (env->tlb[i].entry_valid) {
            interval_tree_insert(&env->tlb[i].itree, &env->tlb_root);
        }
    }

    tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
}

/* Purge (Insn/Data) TLB entry.  This affects an implementation-defined
   number of pages/entries (we choose all), and is local to the cpu.  */
void HELPER(ptlbe)(CPUHPPAState *env)
{
    trace_hppa_tlb_ptlbe(env);
    qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n");
    hppa_ptlbe(env);
}

void cpu_hppa_change_prot_id(CPUHPPAState *env)
{
    tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK);
}

void HELPER(change_prot_id)(CPUHPPAState *env)
{
    cpu_hppa_change_prot_id(env);
}

target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
{
    hwaddr phys;
    int prot, excp;

    excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0,
                                     &phys, &prot, NULL);
    if (excp >= 0) {
        if (excp == EXCP_DTLB_MISS) {
            excp = EXCP_NA_DTLB_MISS;
        }
        trace_hppa_tlb_lpa_failed(env, addr);
        raise_exception_with_ior(env, excp, GETPC(), addr, false);
    }
    trace_hppa_tlb_lpa_success(env, addr, phys);
    return phys;
}

/* Return the ar_type of the TLB at VADDR, or -1.  */
int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr)
{
    HPPATLBEntry *ent = hppa_find_tlb(env, vaddr);
    return ent ? ent->ar_type : -1;
}

/*
 * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to
 * allow operating systems to modify the Block TLB (BTLB) entries.
 * For implementation details see page 1-13 in
 * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf
 */
void HELPER(diag_btlb)(CPUHPPAState *env)
{
    unsigned int phys_page, len, slot;
    int mmu_idx = cpu_mmu_index(env, 0);
    uintptr_t ra = GETPC();
    HPPATLBEntry *btlb;
    uint64_t virt_page;
    uint32_t *vaddr;
    uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);

    /* BTLBs are not supported on 64-bit CPUs */
    if (btlb_entries == 0) {
        env->gr[28] = -1; /* nonexistent procedure */
        return;
    }

    env->gr[28] = 0; /* PDC_OK */

    switch (env->gr[25]) {
    case 0:
        /* return BTLB parameters */
        qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n");
        vaddr = probe_access(env, env->gr[24], 4 * sizeof(target_ulong),
                             MMU_DATA_STORE, mmu_idx, ra);
        if (vaddr == NULL) {
            env->gr[28] = -10; /* invalid argument */
        } else {
            vaddr[0] = cpu_to_be32(1);
            vaddr[1] = cpu_to_be32(16 * 1024);
            vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED);
            vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE);
        }
        break;
    case 1:
        /* insert BTLB entry */
        virt_page = env->gr[24];        /* upper 32 bits */
        virt_page <<= 32;
        virt_page |= env->gr[23];       /* lower 32 bits */
        phys_page = env->gr[22];
        len = env->gr[21];
        slot = env->gr[19];
        qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT "
                    "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d "
                    "into slot %d\n",
                    (long long) virt_page << TARGET_PAGE_BITS,
                    (long long) (virt_page + len) << TARGET_PAGE_BITS,
                    (long long) virt_page, phys_page, len, slot);
        if (slot < btlb_entries) {
            btlb = &env->tlb[slot];

            /* Force flush of possibly existing BTLB entry. */
            hppa_flush_tlb_ent(env, btlb, true);

            /* Create new BTLB entry */
            btlb->itree.start = virt_page << TARGET_PAGE_BITS;
            btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1;
            btlb->pa = phys_page << TARGET_PAGE_BITS;
            set_access_bits_pa11(env, btlb, env->gr[20]);
            btlb->t = 0;
            btlb->d = 1;
        } else {
            env->gr[28] = -10; /* invalid argument */
        }
        break;
    case 2:
        /* Purge BTLB entry */
        slot = env->gr[22];
        qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n",
                                    slot);
        if (slot < btlb_entries) {
            btlb = &env->tlb[slot];
            hppa_flush_tlb_ent(env, btlb, true);
        } else {
            env->gr[28] = -10; /* invalid argument */
        }
        break;
    case 3:
        /* Purge all BTLB entries */
        qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n");
        for (slot = 0; slot < btlb_entries; slot++) {
            btlb = &env->tlb[slot];
            hppa_flush_tlb_ent(env, btlb, true);
        }
        break;
    default:
        env->gr[28] = -2; /* nonexistent option */
        break;
    }
}