aboutsummaryrefslogtreecommitdiff
path: root/target/hexagon/decode.c
blob: d42424559810791dad03c5fa7bf84f0dd8fd49aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
/*
 *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "iclass.h"
#include "attribs.h"
#include "genptr.h"
#include "decode.h"
#include "insn.h"
#include "printinsn.h"

#define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1))

enum {
    EXT_IDX_noext = 0,
    EXT_IDX_noext_AFTER = 4,
    EXT_IDX_mmvec = 4,
    EXT_IDX_mmvec_AFTER = 8,
    XX_LAST_EXT_IDX
};

/*
 *  Certain operand types represent a non-contiguous set of values.
 *  For example, the compound compare-and-jump instruction can only access
 *  registers R0-R7 and R16-23.
 *  This table represents the mapping from the encoding to the actual values.
 */

#define DEF_REGMAP(NAME, ELEMENTS, ...) \
    static const unsigned int DECODE_REGISTER_##NAME[ELEMENTS] = \
    { __VA_ARGS__ };
        /* Name   Num Table */
DEF_REGMAP(R_16,  16, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23)
DEF_REGMAP(R__8,  8,  0, 2, 4, 6, 16, 18, 20, 22)

#define DECODE_MAPPED_REG(OPNUM, NAME) \
    insn->regno[OPNUM] = DECODE_REGISTER_##NAME[insn->regno[OPNUM]];

typedef struct {
    const struct DectreeTable *table_link;
    const struct DectreeTable *table_link_b;
    Opcode opcode;
    enum {
        DECTREE_ENTRY_INVALID,
        DECTREE_TABLE_LINK,
        DECTREE_SUBINSNS,
        DECTREE_EXTSPACE,
        DECTREE_TERMINAL
    } type;
} DectreeEntry;

typedef struct DectreeTable {
    unsigned int (*lookup_function)(int startbit, int width, uint32_t opcode);
    unsigned int size;
    unsigned int startbit;
    unsigned int width;
    const DectreeEntry table[];
} DectreeTable;

#define DECODE_NEW_TABLE(TAG, SIZE, WHATNOT) \
    static const DectreeTable dectree_table_##TAG;
#define TABLE_LINK(TABLE)                     /* NOTHING */
#define TERMINAL(TAG, ENC)                    /* NOTHING */
#define SUBINSNS(TAG, CLASSA, CLASSB, ENC)    /* NOTHING */
#define EXTSPACE(TAG, ENC)                    /* NOTHING */
#define INVALID()                             /* NOTHING */
#define DECODE_END_TABLE(...)                 /* NOTHING */
#define DECODE_MATCH_INFO(...)                /* NOTHING */
#define DECODE_LEGACY_MATCH_INFO(...)         /* NOTHING */
#define DECODE_OPINFO(...)                    /* NOTHING */

#include "dectree_generated.h.inc"

#undef DECODE_OPINFO
#undef DECODE_MATCH_INFO
#undef DECODE_LEGACY_MATCH_INFO
#undef DECODE_END_TABLE
#undef INVALID
#undef TERMINAL
#undef SUBINSNS
#undef EXTSPACE
#undef TABLE_LINK
#undef DECODE_NEW_TABLE
#undef DECODE_SEPARATOR_BITS

#define DECODE_SEPARATOR_BITS(START, WIDTH) NULL, START, WIDTH
#define DECODE_NEW_TABLE_HELPER(TAG, SIZE, FN, START, WIDTH) \
    static const DectreeTable dectree_table_##TAG = { \
        .size = SIZE, \
        .lookup_function = FN, \
        .startbit = START, \
        .width = WIDTH, \
        .table = {
#define DECODE_NEW_TABLE(TAG, SIZE, WHATNOT) \
    DECODE_NEW_TABLE_HELPER(TAG, SIZE, WHATNOT)

#define TABLE_LINK(TABLE) \
    { .type = DECTREE_TABLE_LINK, .table_link = &dectree_table_##TABLE },
#define TERMINAL(TAG, ENC) \
    { .type = DECTREE_TERMINAL, .opcode = TAG  },
#define SUBINSNS(TAG, CLASSA, CLASSB, ENC) \
    { \
        .type = DECTREE_SUBINSNS, \
        .table_link = &dectree_table_DECODE_SUBINSN_##CLASSA, \
        .table_link_b = &dectree_table_DECODE_SUBINSN_##CLASSB \
    },
#define EXTSPACE(TAG, ENC) { .type = DECTREE_EXTSPACE },
#define INVALID() { .type = DECTREE_ENTRY_INVALID, .opcode = XX_LAST_OPCODE },

#define DECODE_END_TABLE(...) } };

#define DECODE_MATCH_INFO(...)                /* NOTHING */
#define DECODE_LEGACY_MATCH_INFO(...)         /* NOTHING */
#define DECODE_OPINFO(...)                    /* NOTHING */

#include "dectree_generated.h.inc"

#undef DECODE_OPINFO
#undef DECODE_MATCH_INFO
#undef DECODE_LEGACY_MATCH_INFO
#undef DECODE_END_TABLE
#undef INVALID
#undef TERMINAL
#undef SUBINSNS
#undef EXTSPACE
#undef TABLE_LINK
#undef DECODE_NEW_TABLE
#undef DECODE_NEW_TABLE_HELPER
#undef DECODE_SEPARATOR_BITS

static const DectreeTable dectree_table_DECODE_EXT_EXT_noext = {
    .size = 1, .lookup_function = NULL, .startbit = 0, .width = 0,
    .table = {
        { .type = DECTREE_ENTRY_INVALID, .opcode = XX_LAST_OPCODE },
    }
};

static const DectreeTable *ext_trees[XX_LAST_EXT_IDX];

static void decode_ext_init(void)
{
    int i;
    for (i = EXT_IDX_noext; i < EXT_IDX_noext_AFTER; i++) {
        ext_trees[i] = &dectree_table_DECODE_EXT_EXT_noext;
    }
}

typedef struct {
    uint32_t mask;
    uint32_t match;
} DecodeITableEntry;

#define DECODE_NEW_TABLE(TAG, SIZE, WHATNOT)  /* NOTHING */
#define TABLE_LINK(TABLE)                     /* NOTHING */
#define TERMINAL(TAG, ENC)                    /* NOTHING */
#define SUBINSNS(TAG, CLASSA, CLASSB, ENC)    /* NOTHING */
#define EXTSPACE(TAG, ENC)                    /* NOTHING */
#define INVALID()                             /* NOTHING */
#define DECODE_END_TABLE(...)                 /* NOTHING */
#define DECODE_OPINFO(...)                    /* NOTHING */

#define DECODE_MATCH_INFO_NORMAL(TAG, MASK, MATCH) \
    [TAG] = { \
        .mask = MASK, \
        .match = MATCH, \
    },

#define DECODE_MATCH_INFO_NULL(TAG, MASK, MATCH) \
    [TAG] = { .match = ~0 },

#define DECODE_MATCH_INFO(...) DECODE_MATCH_INFO_NORMAL(__VA_ARGS__)
#define DECODE_LEGACY_MATCH_INFO(...) /* NOTHING */

static const DecodeITableEntry decode_itable[XX_LAST_OPCODE] = {
#include "dectree_generated.h.inc"
};

#undef DECODE_MATCH_INFO
#define DECODE_MATCH_INFO(...) DECODE_MATCH_INFO_NULL(__VA_ARGS__)

#undef DECODE_LEGACY_MATCH_INFO
#define DECODE_LEGACY_MATCH_INFO(...) DECODE_MATCH_INFO_NORMAL(__VA_ARGS__)

static const DecodeITableEntry decode_legacy_itable[XX_LAST_OPCODE] = {
#include "dectree_generated.h.inc"
};

#undef DECODE_OPINFO
#undef DECODE_MATCH_INFO
#undef DECODE_LEGACY_MATCH_INFO
#undef DECODE_END_TABLE
#undef INVALID
#undef TERMINAL
#undef SUBINSNS
#undef EXTSPACE
#undef TABLE_LINK
#undef DECODE_NEW_TABLE
#undef DECODE_SEPARATOR_BITS

void decode_init(void)
{
    decode_ext_init();
}

void decode_send_insn_to(Packet *packet, int start, int newloc)
{
    Insn tmpinsn;
    int direction;
    int i;
    if (start == newloc) {
        return;
    }
    if (start < newloc) {
        /* Move towards end */
        direction = 1;
    } else {
        /* move towards beginning */
        direction = -1;
    }
    for (i = start; i != newloc; i += direction) {
        tmpinsn = packet->insn[i];
        packet->insn[i] = packet->insn[i + direction];
        packet->insn[i + direction] = tmpinsn;
    }
}

/* Fill newvalue registers with the correct regno */
static void
decode_fill_newvalue_regno(Packet *packet)
{
    int i, use_regidx, offset, def_idx, dst_idx;
    uint16_t def_opcode, use_opcode;
    char *dststr;

    for (i = 1; i < packet->num_insns; i++) {
        if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE) &&
            !GET_ATTRIB(packet->insn[i].opcode, A_EXTENSION)) {
            use_opcode = packet->insn[i].opcode;

            /* It's a store, so we're adjusting the Nt field */
            if (GET_ATTRIB(use_opcode, A_STORE)) {
                use_regidx = strchr(opcode_reginfo[use_opcode], 't') -
                    opcode_reginfo[use_opcode];
            } else {    /* It's a Jump, so we're adjusting the Ns field */
                use_regidx = strchr(opcode_reginfo[use_opcode], 's') -
                    opcode_reginfo[use_opcode];
            }

            /*
             * What's encoded at the N-field is the offset to who's producing
             * the value.  Shift off the LSB which indicates odd/even register,
             * then walk backwards and skip over the constant extenders.
             */
            offset = packet->insn[i].regno[use_regidx] >> 1;
            def_idx = i - offset;
            for (int j = 0; j < offset; j++) {
                if (GET_ATTRIB(packet->insn[i - j - 1].opcode, A_IT_EXTENDER)) {
                    def_idx--;
                }
            }

            /*
             * Check for a badly encoded N-field which points to an instruction
             * out-of-range
             */
            g_assert(!((def_idx < 0) || (def_idx > (packet->num_insns - 1))));

            /*
             * packet->insn[def_idx] is the producer
             * Figure out which type of destination it produces
             * and the corresponding index in the reginfo
             */
            def_opcode = packet->insn[def_idx].opcode;
            dststr = strstr(opcode_wregs[def_opcode], "Rd");
            if (dststr) {
                dststr = strchr(opcode_reginfo[def_opcode], 'd');
            } else {
                dststr = strstr(opcode_wregs[def_opcode], "Rx");
                if (dststr) {
                    dststr = strchr(opcode_reginfo[def_opcode], 'x');
                } else {
                    dststr = strstr(opcode_wregs[def_opcode], "Re");
                    if (dststr) {
                        dststr = strchr(opcode_reginfo[def_opcode], 'e');
                    } else {
                        dststr = strstr(opcode_wregs[def_opcode], "Ry");
                        if (dststr) {
                            dststr = strchr(opcode_reginfo[def_opcode], 'y');
                        } else {
                            g_assert_not_reached();
                        }
                    }
                }
            }
            g_assert(dststr != NULL);

            /* Now patch up the consumer with the register number */
            dst_idx = dststr - opcode_reginfo[def_opcode];
            packet->insn[i].regno[use_regidx] =
                packet->insn[def_idx].regno[dst_idx];
            /*
             * We need to remember who produces this value to later
             * check if it was dynamically cancelled
             */
            packet->insn[i].new_value_producer_slot =
                packet->insn[def_idx].slot;
        }
    }
}

/* Split CJ into a compare and a jump */
static void decode_split_cmpjump(Packet *pkt)
{
    int last, i;
    int numinsns = pkt->num_insns;

    /*
     * First, split all compare-jumps.
     * The compare is sent to the end as a new instruction.
     * Do it this way so we don't reorder dual jumps. Those need to stay in
     * original order.
     */
    for (i = 0; i < numinsns; i++) {
        /* It's a cmp-jump */
        if (GET_ATTRIB(pkt->insn[i].opcode, A_NEWCMPJUMP)) {
            last = pkt->num_insns;
            pkt->insn[last] = pkt->insn[i];    /* copy the instruction */
            pkt->insn[last].part1 = true;      /* last insn does the CMP */
            pkt->insn[i].part1 = false;        /* existing insn does the JUMP */
            pkt->num_insns++;
        }
    }

    /* Now re-shuffle all the compares back to the beginning */
    for (i = 0; i < pkt->num_insns; i++) {
        if (pkt->insn[i].part1) {
            decode_send_insn_to(pkt, i, 0);
        }
    }
}

static bool decode_opcode_can_jump(int opcode)
{
    if ((GET_ATTRIB(opcode, A_JUMP)) ||
        (GET_ATTRIB(opcode, A_CALL)) ||
        (opcode == J2_trap0) ||
        (opcode == J2_pause)) {
        /* Exception to A_JUMP attribute */
        if (opcode == J4_hintjumpr) {
            return false;
        }
        return true;
    }

    return false;
}

static bool decode_opcode_ends_loop(int opcode)
{
    return GET_ATTRIB(opcode, A_HWLOOP0_END) ||
           GET_ATTRIB(opcode, A_HWLOOP1_END);
}

/* Set the is_* fields in each instruction */
static void decode_set_insn_attr_fields(Packet *pkt)
{
    int i;
    int numinsns = pkt->num_insns;
    uint16_t opcode;

    pkt->pkt_has_cof = false;
    pkt->pkt_has_endloop = false;
    pkt->pkt_has_dczeroa = false;

    for (i = 0; i < numinsns; i++) {
        opcode = pkt->insn[i].opcode;
        if (pkt->insn[i].part1) {
            continue;    /* Skip compare of cmp-jumps */
        }

        if (GET_ATTRIB(opcode, A_DCZEROA)) {
            pkt->pkt_has_dczeroa = true;
        }

        if (GET_ATTRIB(opcode, A_STORE)) {
            if (pkt->insn[i].slot == 0) {
                pkt->pkt_has_store_s0 = true;
            } else {
                pkt->pkt_has_store_s1 = true;
            }
        }

        pkt->pkt_has_cof |= decode_opcode_can_jump(opcode);

        pkt->insn[i].is_endloop = decode_opcode_ends_loop(opcode);

        pkt->pkt_has_endloop |= pkt->insn[i].is_endloop;

        pkt->pkt_has_cof |= pkt->pkt_has_endloop;
    }
}

/*
 * Shuffle for execution
 * Move stores to end (in same order as encoding)
 * Move compares to beginning (for use by .new insns)
 */
static void decode_shuffle_for_execution(Packet *packet)
{
    bool changed = false;
    int i;
    bool flag;    /* flag means we've seen a non-memory instruction */
    int n_mems;
    int last_insn = packet->num_insns - 1;

    /*
     * Skip end loops, somehow an end loop is getting in and messing
     * up the order
     */
    if (decode_opcode_ends_loop(packet->insn[last_insn].opcode)) {
        last_insn--;
    }

    do {
        changed = false;
        /*
         * Stores go last, must not reorder.
         * Cannot shuffle stores past loads, either.
         * Iterate backwards.  If we see a non-memory instruction,
         * then a store, shuffle the store to the front.  Don't shuffle
         * stores wrt each other or a load.
         */
        for (flag = false, n_mems = 0, i = last_insn; i >= 0; i--) {
            int opcode = packet->insn[i].opcode;

            if (flag && GET_ATTRIB(opcode, A_STORE)) {
                decode_send_insn_to(packet, i, last_insn - n_mems);
                n_mems++;
                changed = true;
            } else if (GET_ATTRIB(opcode, A_STORE)) {
                n_mems++;
            } else if (GET_ATTRIB(opcode, A_LOAD)) {
                /*
                 * Don't set flag, since we don't want to shuffle a
                 * store past a load
                 */
                n_mems++;
            } else if (GET_ATTRIB(opcode, A_DOTNEWVALUE)) {
                /*
                 * Don't set flag, since we don't want to shuffle past
                 * a .new value
                 */
            } else {
                flag = true;
            }
        }

        if (changed) {
            continue;
        }
        /* Compares go first, may be reordered wrt each other */
        for (flag = false, i = 0; i < last_insn + 1; i++) {
            int opcode = packet->insn[i].opcode;

            if ((strstr(opcode_wregs[opcode], "Pd4") ||
                 strstr(opcode_wregs[opcode], "Pe4")) &&
                GET_ATTRIB(opcode, A_STORE) == 0) {
                /* This should be a compare (not a store conditional) */
                if (flag) {
                    decode_send_insn_to(packet, i, 0);
                    changed = true;
                    continue;
                }
            } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P3) &&
                       !decode_opcode_ends_loop(packet->insn[i].opcode)) {
                /*
                 * spNloop instruction
                 * Don't reorder endloops; they are not valid for .new uses,
                 * and we want to match HW
                 */
                if (flag) {
                    decode_send_insn_to(packet, i, 0);
                    changed = true;
                    continue;
                }
            } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P0) &&
                       !GET_ATTRIB(opcode, A_NEWCMPJUMP)) {
                if (flag) {
                    decode_send_insn_to(packet, i, 0);
                    changed = true;
                    continue;
                }
            } else {
                flag = true;
            }
        }
        if (changed) {
            continue;
        }
    } while (changed);

    /*
     * If we have a .new register compare/branch, move that to the very
     * very end, past stores
     */
    for (i = 0; i < last_insn; i++) {
        if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE)) {
            decode_send_insn_to(packet, i, last_insn);
            break;
        }
    }
}

static void
apply_extender(Packet *pkt, int i, uint32_t extender)
{
    int immed_num;
    uint32_t base_immed;

    immed_num = opcode_which_immediate_is_extended(pkt->insn[i].opcode);
    base_immed = pkt->insn[i].immed[immed_num];

    pkt->insn[i].immed[immed_num] = extender | fZXTN(6, 32, base_immed);
}

static void decode_apply_extenders(Packet *packet)
{
    int i;
    for (i = 0; i < packet->num_insns; i++) {
        if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
            packet->insn[i + 1].extension_valid = true;
            apply_extender(packet, i + 1, packet->insn[i].immed[0]);
        }
    }
}

static void decode_remove_extenders(Packet *packet)
{
    int i, j;
    for (i = 0; i < packet->num_insns; i++) {
        if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
            /* Remove this one by moving the remaining instructions down */
            for (j = i;
                (j < packet->num_insns - 1) && (j < INSTRUCTIONS_MAX - 1);
                j++) {
                packet->insn[j] = packet->insn[j + 1];
            }
            packet->num_insns--;
        }
    }
}

static SlotMask get_valid_slots(const Packet *pkt, unsigned int slot)
{
    return find_iclass_slots(pkt->insn[slot].opcode,
                             pkt->insn[slot].iclass);
}

#define DECODE_NEW_TABLE(TAG, SIZE, WHATNOT)     /* NOTHING */
#define TABLE_LINK(TABLE)                        /* NOTHING */
#define TERMINAL(TAG, ENC)                       /* NOTHING */
#define SUBINSNS(TAG, CLASSA, CLASSB, ENC)       /* NOTHING */
#define EXTSPACE(TAG, ENC)                       /* NOTHING */
#define INVALID()                                /* NOTHING */
#define DECODE_END_TABLE(...)                    /* NOTHING */
#define DECODE_MATCH_INFO(...)                   /* NOTHING */
#define DECODE_LEGACY_MATCH_INFO(...)            /* NOTHING */

#define DECODE_REG(REGNO, WIDTH, STARTBIT) \
    insn->regno[REGNO] = ((encoding >> STARTBIT) & ((1 << WIDTH) - 1));

#define DECODE_IMPL_REG(REGNO, VAL) \
    insn->regno[REGNO] = VAL;

#define DECODE_IMM(IMMNO, WIDTH, STARTBIT, VALSTART) \
    insn->immed[IMMNO] |= (((encoding >> STARTBIT) & ((1 << WIDTH) - 1))) << \
                          (VALSTART);

#define DECODE_IMM_SXT(IMMNO, WIDTH) \
    insn->immed[IMMNO] = ((((int32_t)insn->immed[IMMNO]) << (32 - WIDTH)) >> \
                          (32 - WIDTH));

#define DECODE_IMM_NEG(IMMNO, WIDTH) \
    insn->immed[IMMNO] = -insn->immed[IMMNO];

#define DECODE_IMM_SHIFT(IMMNO, SHAMT)                                 \
    if ((!insn->extension_valid) || \
        (insn->which_extended != IMMNO)) { \
        insn->immed[IMMNO] <<= SHAMT; \
    }

#define DECODE_OPINFO(TAG, BEH) \
    case TAG: \
        { BEH  } \
        break; \

/*
 * Fill in the operands of the instruction
 * dectree_generated.h.inc has a DECODE_OPINFO entry for each opcode
 * For example,
 *     DECODE_OPINFO(A2_addi,
 *          DECODE_REG(0,5,0)
 *          DECODE_REG(1,5,16)
 *          DECODE_IMM(0,7,21,9)
 *          DECODE_IMM(0,9,5,0)
 *          DECODE_IMM_SXT(0,16)
 * with the macros defined above, we'll fill in a switch statement
 * where each case is an opcode tag.
 */
static void
decode_op(Insn *insn, Opcode tag, uint32_t encoding)
{
    insn->immed[0] = 0;
    insn->immed[1] = 0;
    insn->opcode = tag;
    if (insn->extension_valid) {
        insn->which_extended = opcode_which_immediate_is_extended(tag);
    }

    switch (tag) {
#include "dectree_generated.h.inc"
    default:
        break;
    }

    insn->generate = opcode_genptr[tag];

    insn->iclass = iclass_bits(encoding);
}

#undef DECODE_REG
#undef DECODE_IMPL_REG
#undef DECODE_IMM
#undef DECODE_IMM_SHIFT
#undef DECODE_OPINFO
#undef DECODE_MATCH_INFO
#undef DECODE_LEGACY_MATCH_INFO
#undef DECODE_END_TABLE
#undef INVALID
#undef TERMINAL
#undef SUBINSNS
#undef EXTSPACE
#undef TABLE_LINK
#undef DECODE_NEW_TABLE
#undef DECODE_SEPARATOR_BITS

static unsigned int
decode_subinsn_tablewalk(Insn *insn, const DectreeTable *table,
                         uint32_t encoding)
{
    unsigned int i;
    Opcode opc;
    if (table->lookup_function) {
        i = table->lookup_function(table->startbit, table->width, encoding);
    } else {
        i = extract32(encoding, table->startbit, table->width);
    }
    if (table->table[i].type == DECTREE_TABLE_LINK) {
        return decode_subinsn_tablewalk(insn, table->table[i].table_link,
                                        encoding);
    } else if (table->table[i].type == DECTREE_TERMINAL) {
        opc = table->table[i].opcode;
        if ((encoding & decode_itable[opc].mask) != decode_itable[opc].match) {
            return 0;
        }
        decode_op(insn, opc, encoding);
        return 1;
    } else {
        return 0;
    }
}

static unsigned int get_insn_a(uint32_t encoding)
{
    return extract32(encoding, 0, 13);
}

static unsigned int get_insn_b(uint32_t encoding)
{
    return extract32(encoding, 16, 13);
}

static unsigned int
decode_insns_tablewalk(Insn *insn, const DectreeTable *table,
                       uint32_t encoding)
{
    unsigned int i;
    unsigned int a, b;
    Opcode opc;
    if (table->lookup_function) {
        i = table->lookup_function(table->startbit, table->width, encoding);
    } else {
        i = extract32(encoding, table->startbit, table->width);
    }
    if (table->table[i].type == DECTREE_TABLE_LINK) {
        return decode_insns_tablewalk(insn, table->table[i].table_link,
                                      encoding);
    } else if (table->table[i].type == DECTREE_SUBINSNS) {
        a = get_insn_a(encoding);
        b = get_insn_b(encoding);
        b = decode_subinsn_tablewalk(insn, table->table[i].table_link_b, b);
        a = decode_subinsn_tablewalk(insn + 1, table->table[i].table_link, a);
        if ((a == 0) || (b == 0)) {
            return 0;
        }
        return 2;
    } else if (table->table[i].type == DECTREE_TERMINAL) {
        opc = table->table[i].opcode;
        if ((encoding & decode_itable[opc].mask) != decode_itable[opc].match) {
            if ((encoding & decode_legacy_itable[opc].mask) !=
                decode_legacy_itable[opc].match) {
                return 0;
            }
        }
        decode_op(insn, opc, encoding);
        return 1;
    } else {
        return 0;
    }
}

static unsigned int
decode_insns(Insn *insn, uint32_t encoding)
{
    const DectreeTable *table;
    if (parse_bits(encoding) != 0) {
        /* Start with PP table - 32 bit instructions */
        table = &dectree_table_DECODE_ROOT_32;
    } else {
        /* start with EE table - duplex instructions */
        table = &dectree_table_DECODE_ROOT_EE;
    }
    return decode_insns_tablewalk(insn, table, encoding);
}

static void decode_add_endloop_insn(Insn *insn, int loopnum)
{
    if (loopnum == 10) {
        insn->opcode = J2_endloop01;
        insn->generate = opcode_genptr[J2_endloop01];
    } else if (loopnum == 1) {
        insn->opcode = J2_endloop1;
        insn->generate = opcode_genptr[J2_endloop1];
    } else if (loopnum == 0) {
        insn->opcode = J2_endloop0;
        insn->generate = opcode_genptr[J2_endloop0];
    } else {
        g_assert_not_reached();
    }
}

static bool decode_parsebits_is_loopend(uint32_t encoding32)
{
    uint32_t bits = parse_bits(encoding32);
    return bits == 0x2;
}

static void
decode_set_slot_number(Packet *pkt)
{
    int slot;
    int i;
    bool hit_mem_insn = false;
    bool hit_duplex = false;
    bool slot0_found = false;
    bool slot1_found = false;
    int slot1_iidx = 0;

    /*
     * The slots are encoded in reverse order
     * For each instruction, count down until you find a suitable slot
     */
    for (i = 0, slot = 3; i < pkt->num_insns; i++) {
        SlotMask valid_slots = get_valid_slots(pkt, i);

        while (!(valid_slots & (1 << slot))) {
            slot--;
        }
        pkt->insn[i].slot = slot;
        if (slot) {
            /* I've assigned the slot, now decrement it for the next insn */
            slot--;
        }
    }

    /* Fix the exceptions - mem insns to slot 0,1 */
    for (i = pkt->num_insns - 1; i >= 0; i--) {
        /* First memory instruction always goes to slot 0 */
        if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
             GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
            !hit_mem_insn) {
            hit_mem_insn = true;
            pkt->insn[i].slot = 0;
            continue;
        }

        /* Next memory instruction always goes to slot 1 */
        if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
             GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
            hit_mem_insn) {
            pkt->insn[i].slot = 1;
        }
    }

    /* Fix the exceptions - duplex always slot 0,1 */
    for (i = pkt->num_insns - 1; i >= 0; i--) {
        /* First subinsn always goes to slot 0 */
        if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && !hit_duplex) {
            hit_duplex = true;
            pkt->insn[i].slot = 0;
            continue;
        }

        /* Next subinsn always goes to slot 1 */
        if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && hit_duplex) {
            pkt->insn[i].slot = 1;
        }
    }

    /* Fix the exceptions - slot 1 is never empty, always aligns to slot 0 */
    for (i = pkt->num_insns - 1; i >= 0; i--) {
        /* Is slot0 used? */
        if (pkt->insn[i].slot == 0) {
            bool is_endloop = (pkt->insn[i].opcode == J2_endloop01);
            is_endloop |= (pkt->insn[i].opcode == J2_endloop0);
            is_endloop |= (pkt->insn[i].opcode == J2_endloop1);

            /*
             * Make sure it's not endloop since, we're overloading
             * slot0 for endloop
             */
            if (!is_endloop) {
                slot0_found = true;
            }
        }
        /* Is slot1 used? */
        if (pkt->insn[i].slot == 1) {
            slot1_found = true;
            slot1_iidx = i;
        }
    }
    /* Is slot0 empty and slot1 used? */
    if ((!slot0_found) && slot1_found) {
        /* Then push it to slot0 */
        pkt->insn[slot1_iidx].slot = 0;
    }
}

/*
 * decode_packet
 * Decodes packet with given words
 * Returns 0 on insufficient words,
 * or number of words used on success
 */

int decode_packet(int max_words, const uint32_t *words, Packet *pkt,
                  bool disas_only)
{
    int num_insns = 0;
    int words_read = 0;
    bool end_of_packet = false;
    int new_insns = 0;
    uint32_t encoding32;

    /* Initialize */
    memset(pkt, 0, sizeof(*pkt));
    /* Try to build packet */
    while (!end_of_packet && (words_read < max_words)) {
        encoding32 = words[words_read];
        end_of_packet = is_packet_end(encoding32);
        new_insns = decode_insns(&pkt->insn[num_insns], encoding32);
        g_assert(new_insns > 0);
        /*
         * If we saw an extender, mark next word extended so immediate
         * decode works
         */
        if (pkt->insn[num_insns].opcode == A4_ext) {
            pkt->insn[num_insns + 1].extension_valid = true;
        }
        num_insns += new_insns;
        words_read++;
    }

    pkt->num_insns = num_insns;
    if (!end_of_packet) {
        /* Ran out of words! */
        return 0;
    }
    pkt->encod_pkt_size_in_bytes = words_read * 4;

    /*
     * Check for :endloop in the parse bits
     * Section 10.6 of the Programmer's Reference describes the encoding
     *     The end of hardware loop 0 can be encoded with 2 words
     *     The end of hardware loop 1 needs 3 words
     */
    if ((words_read == 2) && (decode_parsebits_is_loopend(words[0]))) {
        decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
    }
    if (words_read >= 3) {
        bool has_loop0, has_loop1;
        has_loop0 = decode_parsebits_is_loopend(words[0]);
        has_loop1 = decode_parsebits_is_loopend(words[1]);
        if (has_loop0 && has_loop1) {
            decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 10);
        } else if (has_loop1) {
            decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 1);
        } else if (has_loop0) {
            decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
        }
    }

    decode_apply_extenders(pkt);
    if (!disas_only) {
        decode_remove_extenders(pkt);
    }
    decode_set_slot_number(pkt);
    decode_fill_newvalue_regno(pkt);

    if (!disas_only) {
        decode_shuffle_for_execution(pkt);
        decode_split_cmpjump(pkt);
        decode_set_insn_attr_fields(pkt);
    }

    return words_read;
}

/* Used for "-d in_asm" logging */
int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc,
                        GString *buf)
{
    Packet pkt;

    if (decode_packet(nwords, words, &pkt, true) > 0) {
        snprint_a_pkt_disas(buf, &pkt, words, pc);
        return pkt.encod_pkt_size_in_bytes;
    } else {
        g_string_assign(buf, "<invalid>");
        return 0;
    }
}