1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
/*
* QEMU AVR CPU helpers
*
* Copyright (c) 2016-2020 Michael Rolnik
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "cpu.h"
#include "hw/core/tcg-cpu-ops.h"
#include "exec/exec-all.h"
#include "exec/page-protection.h"
#include "exec/cpu_ldst.h"
#include "exec/address-spaces.h"
#include "exec/helper-proto.h"
bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUAVRState *env = cpu_env(cs);
/*
* We cannot separate a skip from the next instruction,
* as the skip would not be preserved across the interrupt.
* Separating the two insn normally only happens at page boundaries.
*/
if (env->skip) {
return false;
}
if (interrupt_request & CPU_INTERRUPT_RESET) {
if (cpu_interrupts_enabled(env)) {
cs->exception_index = EXCP_RESET;
avr_cpu_do_interrupt(cs);
cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
return true;
}
}
if (interrupt_request & CPU_INTERRUPT_HARD) {
if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
int index = ctz64(env->intsrc);
cs->exception_index = EXCP_INT(index);
avr_cpu_do_interrupt(cs);
env->intsrc &= env->intsrc - 1; /* clear the interrupt */
if (!env->intsrc) {
cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
}
return true;
}
}
return false;
}
void avr_cpu_do_interrupt(CPUState *cs)
{
CPUAVRState *env = cpu_env(cs);
uint32_t ret = env->pc_w;
int vector = 0;
int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
int base = 0;
if (cs->exception_index == EXCP_RESET) {
vector = 0;
} else if (env->intsrc != 0) {
vector = ctz64(env->intsrc) + 1;
}
if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
} else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
} else {
cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
}
env->pc_w = base + vector * size;
env->sregI = 0; /* clear Global Interrupt Flag */
cs->exception_index = -1;
}
hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
return addr; /* I assume 1:1 address correspondence */
}
bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
int prot, page_size = TARGET_PAGE_SIZE;
uint32_t paddr;
address &= TARGET_PAGE_MASK;
if (mmu_idx == MMU_CODE_IDX) {
/* Access to code in flash. */
paddr = OFFSET_CODE + address;
prot = PAGE_READ | PAGE_EXEC;
if (paddr >= OFFSET_DATA) {
/*
* This should not be possible via any architectural operations.
* There is certainly not an exception that we can deliver.
* Accept probing that might come from generic code.
*/
if (probe) {
return false;
}
error_report("execution left flash memory");
abort();
}
} else {
/* Access to memory. */
paddr = OFFSET_DATA + address;
prot = PAGE_READ | PAGE_WRITE;
if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/*
* Access to CPU registers, exit and rebuilt this TB to use
* full access in case it touches specially handled registers
* like SREG or SP. For probing, set page_size = 1, in order
* to force tlb_fill to be called for the next access.
*/
if (probe) {
page_size = 1;
} else {
cpu_env(cs)->fullacc = 1;
cpu_loop_exit_restore(cs, retaddr);
}
}
}
tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
return true;
}
/*
* helpers
*/
void helper_sleep(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_HLT;
cpu_loop_exit(cs);
}
void helper_unsupported(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
/*
* I count not find what happens on the real platform, so
* it's EXCP_DEBUG for meanwhile
*/
cs->exception_index = EXCP_DEBUG;
if (qemu_loglevel_mask(LOG_UNIMP)) {
qemu_log("UNSUPPORTED\n");
cpu_dump_state(cs, stderr, 0);
}
cpu_loop_exit(cs);
}
void helper_debug(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_DEBUG;
cpu_loop_exit(cs);
}
void helper_break(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_DEBUG;
cpu_loop_exit(cs);
}
void helper_wdr(CPUAVRState *env)
{
qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
}
/*
* This function implements IN instruction
*
* It does the following
* a. if an IO register belongs to CPU, its value is read and returned
* b. otherwise io address is translated to mem address and physical memory
* is read.
* c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
*
*/
target_ulong helper_inb(CPUAVRState *env, uint32_t port)
{
target_ulong data = 0;
switch (port) {
case 0x38: /* RAMPD */
data = 0xff & (env->rampD >> 16);
break;
case 0x39: /* RAMPX */
data = 0xff & (env->rampX >> 16);
break;
case 0x3a: /* RAMPY */
data = 0xff & (env->rampY >> 16);
break;
case 0x3b: /* RAMPZ */
data = 0xff & (env->rampZ >> 16);
break;
case 0x3c: /* EIND */
data = 0xff & (env->eind >> 16);
break;
case 0x3d: /* SPL */
data = env->sp & 0x00ff;
break;
case 0x3e: /* SPH */
data = env->sp >> 8;
break;
case 0x3f: /* SREG */
data = cpu_get_sreg(env);
break;
default:
/* not a special register, pass to normal memory access */
data = address_space_ldub(&address_space_memory,
OFFSET_IO_REGISTERS + port,
MEMTXATTRS_UNSPECIFIED, NULL);
}
return data;
}
/*
* This function implements OUT instruction
*
* It does the following
* a. if an IO register belongs to CPU, its value is written into the register
* b. otherwise io address is translated to mem address and physical memory
* is written.
* c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
*
*/
void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
{
data &= 0x000000ff;
switch (port) {
case 0x38: /* RAMPD */
if (avr_feature(env, AVR_FEATURE_RAMPD)) {
env->rampD = (data & 0xff) << 16;
}
break;
case 0x39: /* RAMPX */
if (avr_feature(env, AVR_FEATURE_RAMPX)) {
env->rampX = (data & 0xff) << 16;
}
break;
case 0x3a: /* RAMPY */
if (avr_feature(env, AVR_FEATURE_RAMPY)) {
env->rampY = (data & 0xff) << 16;
}
break;
case 0x3b: /* RAMPZ */
if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
env->rampZ = (data & 0xff) << 16;
}
break;
case 0x3c: /* EIDN */
env->eind = (data & 0xff) << 16;
break;
case 0x3d: /* SPL */
env->sp = (env->sp & 0xff00) | (data);
break;
case 0x3e: /* SPH */
if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
env->sp = (env->sp & 0x00ff) | (data << 8);
}
break;
case 0x3f: /* SREG */
cpu_set_sreg(env, data);
break;
default:
/* not a special register, pass to normal memory access */
address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
data, MEMTXATTRS_UNSPECIFIED, NULL);
}
}
/*
* this function implements LD instruction when there is a possibility to read
* from a CPU register
*/
target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
{
uint8_t data;
env->fullacc = false;
if (addr < NUMBER_OF_CPU_REGISTERS) {
/* CPU registers */
data = env->r[addr];
} else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/* IO registers */
data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
} else {
/* memory */
data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
MEMTXATTRS_UNSPECIFIED, NULL);
}
return data;
}
/*
* this function implements ST instruction when there is a possibility to write
* into a CPU register
*/
void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
{
env->fullacc = false;
/* Following logic assumes this: */
assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
NUMBER_OF_CPU_REGISTERS);
if (addr < NUMBER_OF_CPU_REGISTERS) {
/* CPU registers */
env->r[addr] = data;
} else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/* IO registers */
helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
} else {
/* memory */
address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
MEMTXATTRS_UNSPECIFIED, NULL);
}
}
|