1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
/*
* QEMU AVR CPU
*
* Copyright (c) 2016-2020 Michael Rolnik
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#ifndef QEMU_AVR_CPU_H
#define QEMU_AVR_CPU_H
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
#ifdef CONFIG_USER_ONLY
#error "AVR 8-bit does not support user mode"
#endif
#define AVR_CPU_TYPE_SUFFIX "-" TYPE_AVR_CPU
#define AVR_CPU_TYPE_NAME(name) (name AVR_CPU_TYPE_SUFFIX)
#define CPU_RESOLVING_TYPE TYPE_AVR_CPU
#define TCG_GUEST_DEFAULT_MO 0
/*
* AVR has two memory spaces, data & code.
* e.g. both have 0 address
* ST/LD instructions access data space
* LPM/SPM and instruction fetching access code memory space
*/
#define MMU_CODE_IDX 0
#define MMU_DATA_IDX 1
#define EXCP_RESET 1
#define EXCP_INT(n) (EXCP_RESET + (n) + 1)
/* Number of CPU registers */
#define NUMBER_OF_CPU_REGISTERS 32
/* Number of IO registers accessible by ld/st/in/out */
#define NUMBER_OF_IO_REGISTERS 64
/*
* Offsets of AVR memory regions in host memory space.
*
* This is needed because the AVR has separate code and data address
* spaces that both have start from zero but have to go somewhere in
* host memory.
*
* It's also useful to know where some things are, like the IO registers.
*/
/* Flash program memory */
#define OFFSET_CODE 0x00000000
/* CPU registers, IO registers, and SRAM */
#define OFFSET_DATA 0x00800000
/* CPU registers specifically, these are mapped at the start of data */
#define OFFSET_CPU_REGISTERS OFFSET_DATA
/*
* IO registers, including status register, stack pointer, and memory
* mapped peripherals, mapped just after CPU registers
*/
#define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS)
typedef struct CPUAVRState CPUAVRState;
struct CPUAVRState {
uint32_t pc_w; /* 0x003fffff up to 22 bits */
uint32_t sregC; /* 0x00000001 1 bit */
uint32_t sregZ; /* 0x00000001 1 bit */
uint32_t sregN; /* 0x00000001 1 bit */
uint32_t sregV; /* 0x00000001 1 bit */
uint32_t sregS; /* 0x00000001 1 bit */
uint32_t sregH; /* 0x00000001 1 bit */
uint32_t sregT; /* 0x00000001 1 bit */
uint32_t sregI; /* 0x00000001 1 bit */
uint32_t rampD; /* 0x00ff0000 8 bits */
uint32_t rampX; /* 0x00ff0000 8 bits */
uint32_t rampY; /* 0x00ff0000 8 bits */
uint32_t rampZ; /* 0x00ff0000 8 bits */
uint32_t eind; /* 0x00ff0000 8 bits */
uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */
uint32_t sp; /* 16 bits */
uint32_t skip; /* if set skip instruction */
uint64_t intsrc; /* interrupt sources */
bool fullacc; /* CPU/MEM if true MEM only otherwise */
uint64_t features;
};
/**
* AVRCPU:
* @env: #CPUAVRState
*
* A AVR CPU.
*/
typedef struct AVRCPU {
/*< private >*/
CPUState parent_obj;
/*< public >*/
CPUNegativeOffsetState neg;
CPUAVRState env;
} AVRCPU;
void avr_cpu_do_interrupt(CPUState *cpu);
bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
#define cpu_list avr_cpu_list
#define cpu_signal_handler cpu_avr_signal_handler
#define cpu_mmu_index avr_cpu_mmu_index
static inline int avr_cpu_mmu_index(CPUAVRState *env, bool ifetch)
{
return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
}
void avr_cpu_tcg_init(void);
void avr_cpu_list(void);
int cpu_avr_exec(CPUState *cpu);
int cpu_avr_signal_handler(int host_signum, void *pinfo, void *puc);
int avr_cpu_memory_rw_debug(CPUState *cs, vaddr address, uint8_t *buf,
int len, bool is_write);
enum {
TB_FLAGS_FULL_ACCESS = 1,
TB_FLAGS_SKIP = 2,
};
static inline void cpu_get_tb_cpu_state(CPUAVRState *env, target_ulong *pc,
target_ulong *cs_base, uint32_t *pflags)
{
uint32_t flags = 0;
*pc = env->pc_w * 2;
*cs_base = 0;
if (env->fullacc) {
flags |= TB_FLAGS_FULL_ACCESS;
}
if (env->skip) {
flags |= TB_FLAGS_SKIP;
}
*pflags = flags;
}
static inline int cpu_interrupts_enabled(CPUAVRState *env)
{
return env->sregI != 0;
}
static inline uint8_t cpu_get_sreg(CPUAVRState *env)
{
uint8_t sreg;
sreg = (env->sregC) << 0
| (env->sregZ) << 1
| (env->sregN) << 2
| (env->sregV) << 3
| (env->sregS) << 4
| (env->sregH) << 5
| (env->sregT) << 6
| (env->sregI) << 7;
return sreg;
}
static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
{
env->sregC = (sreg >> 0) & 0x01;
env->sregZ = (sreg >> 1) & 0x01;
env->sregN = (sreg >> 2) & 0x01;
env->sregV = (sreg >> 3) & 0x01;
env->sregS = (sreg >> 4) & 0x01;
env->sregH = (sreg >> 5) & 0x01;
env->sregT = (sreg >> 6) & 0x01;
env->sregI = (sreg >> 7) & 0x01;
}
bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
typedef CPUAVRState CPUArchState;
typedef AVRCPU ArchCPU;
#include "exec/cpu-all.h"
#endif /* !defined (QEMU_AVR_CPU_H) */
|