1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
|
/*
* AArch64 SVE translation
*
* Copyright (c) 2018 Linaro, Ltd
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "tcg-op.h"
#include "tcg-op-gvec.h"
#include "tcg-gvec-desc.h"
#include "qemu/log.h"
#include "arm_ldst.h"
#include "translate.h"
#include "internals.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "exec/log.h"
#include "trace-tcg.h"
#include "translate-a64.h"
/*
* Helpers for extracting complex instruction fields.
*/
/* See e.g. ASR (immediate, predicated).
* Returns -1 for unallocated encoding; diagnose later.
*/
static int tszimm_esz(int x)
{
x >>= 3; /* discard imm3 */
return 31 - clz32(x);
}
static int tszimm_shr(int x)
{
return (16 << tszimm_esz(x)) - x;
}
/* See e.g. LSL (immediate, predicated). */
static int tszimm_shl(int x)
{
return x - (8 << tszimm_esz(x));
}
/*
* Include the generated decoder.
*/
#include "decode-sve.inc.c"
/*
* Implement all of the translator functions referenced by the decoder.
*/
/* Return the offset info CPUARMState of the predicate vector register Pn.
* Note for this purpose, FFR is P16.
*/
static inline int pred_full_reg_offset(DisasContext *s, int regno)
{
return offsetof(CPUARMState, vfp.pregs[regno]);
}
/* Return the byte size of the whole predicate register, VL / 64. */
static inline int pred_full_reg_size(DisasContext *s)
{
return s->sve_len >> 3;
}
/* Round up the size of a register to a size allowed by
* the tcg vector infrastructure. Any operation which uses this
* size may assume that the bits above pred_full_reg_size are zero,
* and must leave them the same way.
*
* Note that this is not needed for the vector registers as they
* are always properly sized for tcg vectors.
*/
static int size_for_gvec(int size)
{
if (size <= 8) {
return 8;
} else {
return QEMU_ALIGN_UP(size, 16);
}
}
static int pred_gvec_reg_size(DisasContext *s)
{
return size_for_gvec(pred_full_reg_size(s));
}
/* Invoke a vector expander on two Zregs. */
static bool do_vector2_z(DisasContext *s, GVecGen2Fn *gvec_fn,
int esz, int rd, int rn)
{
if (sve_access_check(s)) {
unsigned vsz = vec_full_reg_size(s);
gvec_fn(esz, vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn), vsz, vsz);
}
return true;
}
/* Invoke a vector expander on three Zregs. */
static bool do_vector3_z(DisasContext *s, GVecGen3Fn *gvec_fn,
int esz, int rd, int rn, int rm)
{
if (sve_access_check(s)) {
unsigned vsz = vec_full_reg_size(s);
gvec_fn(esz, vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm), vsz, vsz);
}
return true;
}
/* Invoke a vector move on two Zregs. */
static bool do_mov_z(DisasContext *s, int rd, int rn)
{
return do_vector2_z(s, tcg_gen_gvec_mov, 0, rd, rn);
}
/* Initialize a Zreg with replications of a 64-bit immediate. */
static void do_dupi_z(DisasContext *s, int rd, uint64_t word)
{
unsigned vsz = vec_full_reg_size(s);
tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), vsz, vsz, word);
}
/* Invoke a vector expander on two Pregs. */
static bool do_vector2_p(DisasContext *s, GVecGen2Fn *gvec_fn,
int esz, int rd, int rn)
{
if (sve_access_check(s)) {
unsigned psz = pred_gvec_reg_size(s);
gvec_fn(esz, pred_full_reg_offset(s, rd),
pred_full_reg_offset(s, rn), psz, psz);
}
return true;
}
/* Invoke a vector expander on three Pregs. */
static bool do_vector3_p(DisasContext *s, GVecGen3Fn *gvec_fn,
int esz, int rd, int rn, int rm)
{
if (sve_access_check(s)) {
unsigned psz = pred_gvec_reg_size(s);
gvec_fn(esz, pred_full_reg_offset(s, rd),
pred_full_reg_offset(s, rn),
pred_full_reg_offset(s, rm), psz, psz);
}
return true;
}
/* Invoke a vector operation on four Pregs. */
static bool do_vecop4_p(DisasContext *s, const GVecGen4 *gvec_op,
int rd, int rn, int rm, int rg)
{
if (sve_access_check(s)) {
unsigned psz = pred_gvec_reg_size(s);
tcg_gen_gvec_4(pred_full_reg_offset(s, rd),
pred_full_reg_offset(s, rn),
pred_full_reg_offset(s, rm),
pred_full_reg_offset(s, rg),
psz, psz, gvec_op);
}
return true;
}
/* Invoke a vector move on two Pregs. */
static bool do_mov_p(DisasContext *s, int rd, int rn)
{
return do_vector2_p(s, tcg_gen_gvec_mov, 0, rd, rn);
}
/* Set the cpu flags as per a return from an SVE helper. */
static void do_pred_flags(TCGv_i32 t)
{
tcg_gen_mov_i32(cpu_NF, t);
tcg_gen_andi_i32(cpu_ZF, t, 2);
tcg_gen_andi_i32(cpu_CF, t, 1);
tcg_gen_movi_i32(cpu_VF, 0);
}
/* Subroutines computing the ARM PredTest psuedofunction. */
static void do_predtest1(TCGv_i64 d, TCGv_i64 g)
{
TCGv_i32 t = tcg_temp_new_i32();
gen_helper_sve_predtest1(t, d, g);
do_pred_flags(t);
tcg_temp_free_i32(t);
}
static void do_predtest(DisasContext *s, int dofs, int gofs, int words)
{
TCGv_ptr dptr = tcg_temp_new_ptr();
TCGv_ptr gptr = tcg_temp_new_ptr();
TCGv_i32 t;
tcg_gen_addi_ptr(dptr, cpu_env, dofs);
tcg_gen_addi_ptr(gptr, cpu_env, gofs);
t = tcg_const_i32(words);
gen_helper_sve_predtest(t, dptr, gptr, t);
tcg_temp_free_ptr(dptr);
tcg_temp_free_ptr(gptr);
do_pred_flags(t);
tcg_temp_free_i32(t);
}
/* For each element size, the bits within a predicate word that are active. */
const uint64_t pred_esz_masks[4] = {
0xffffffffffffffffull, 0x5555555555555555ull,
0x1111111111111111ull, 0x0101010101010101ull
};
/*
*** SVE Logical - Unpredicated Group
*/
static bool trans_AND_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
}
static bool trans_ORR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
if (a->rn == a->rm) { /* MOV */
return do_mov_z(s, a->rd, a->rn);
} else {
return do_vector3_z(s, tcg_gen_gvec_or, 0, a->rd, a->rn, a->rm);
}
}
static bool trans_EOR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_xor, 0, a->rd, a->rn, a->rm);
}
static bool trans_BIC_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
}
/*
*** SVE Integer Arithmetic - Unpredicated Group
*/
static bool trans_ADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_add, a->esz, a->rd, a->rn, a->rm);
}
static bool trans_SUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_sub, a->esz, a->rd, a->rn, a->rm);
}
static bool trans_SQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_ssadd, a->esz, a->rd, a->rn, a->rm);
}
static bool trans_SQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_sssub, a->esz, a->rd, a->rn, a->rm);
}
static bool trans_UQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_usadd, a->esz, a->rd, a->rn, a->rm);
}
static bool trans_UQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
{
return do_vector3_z(s, tcg_gen_gvec_ussub, a->esz, a->rd, a->rn, a->rm);
}
/*
*** SVE Integer Arithmetic - Binary Predicated Group
*/
static bool do_zpzz_ool(DisasContext *s, arg_rprr_esz *a, gen_helper_gvec_4 *fn)
{
unsigned vsz = vec_full_reg_size(s);
if (fn == NULL) {
return false;
}
if (sve_access_check(s)) {
tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm),
pred_full_reg_offset(s, a->pg),
vsz, vsz, 0, fn);
}
return true;
}
#define DO_ZPZZ(NAME, name) \
static bool trans_##NAME##_zpzz(DisasContext *s, arg_rprr_esz *a, \
uint32_t insn) \
{ \
static gen_helper_gvec_4 * const fns[4] = { \
gen_helper_sve_##name##_zpzz_b, gen_helper_sve_##name##_zpzz_h, \
gen_helper_sve_##name##_zpzz_s, gen_helper_sve_##name##_zpzz_d, \
}; \
return do_zpzz_ool(s, a, fns[a->esz]); \
}
DO_ZPZZ(AND, and)
DO_ZPZZ(EOR, eor)
DO_ZPZZ(ORR, orr)
DO_ZPZZ(BIC, bic)
DO_ZPZZ(ADD, add)
DO_ZPZZ(SUB, sub)
DO_ZPZZ(SMAX, smax)
DO_ZPZZ(UMAX, umax)
DO_ZPZZ(SMIN, smin)
DO_ZPZZ(UMIN, umin)
DO_ZPZZ(SABD, sabd)
DO_ZPZZ(UABD, uabd)
DO_ZPZZ(MUL, mul)
DO_ZPZZ(SMULH, smulh)
DO_ZPZZ(UMULH, umulh)
DO_ZPZZ(ASR, asr)
DO_ZPZZ(LSR, lsr)
DO_ZPZZ(LSL, lsl)
static bool trans_SDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
{
static gen_helper_gvec_4 * const fns[4] = {
NULL, NULL, gen_helper_sve_sdiv_zpzz_s, gen_helper_sve_sdiv_zpzz_d
};
return do_zpzz_ool(s, a, fns[a->esz]);
}
static bool trans_UDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
{
static gen_helper_gvec_4 * const fns[4] = {
NULL, NULL, gen_helper_sve_udiv_zpzz_s, gen_helper_sve_udiv_zpzz_d
};
return do_zpzz_ool(s, a, fns[a->esz]);
}
#undef DO_ZPZZ
/*
*** SVE Integer Arithmetic - Unary Predicated Group
*/
static bool do_zpz_ool(DisasContext *s, arg_rpr_esz *a, gen_helper_gvec_3 *fn)
{
if (fn == NULL) {
return false;
}
if (sve_access_check(s)) {
unsigned vsz = vec_full_reg_size(s);
tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
pred_full_reg_offset(s, a->pg),
vsz, vsz, 0, fn);
}
return true;
}
#define DO_ZPZ(NAME, name) \
static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
{ \
static gen_helper_gvec_3 * const fns[4] = { \
gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
}; \
return do_zpz_ool(s, a, fns[a->esz]); \
}
DO_ZPZ(CLS, cls)
DO_ZPZ(CLZ, clz)
DO_ZPZ(CNT_zpz, cnt_zpz)
DO_ZPZ(CNOT, cnot)
DO_ZPZ(NOT_zpz, not_zpz)
DO_ZPZ(ABS, abs)
DO_ZPZ(NEG, neg)
static bool trans_FABS(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
NULL,
gen_helper_sve_fabs_h,
gen_helper_sve_fabs_s,
gen_helper_sve_fabs_d
};
return do_zpz_ool(s, a, fns[a->esz]);
}
static bool trans_FNEG(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
NULL,
gen_helper_sve_fneg_h,
gen_helper_sve_fneg_s,
gen_helper_sve_fneg_d
};
return do_zpz_ool(s, a, fns[a->esz]);
}
static bool trans_SXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
NULL,
gen_helper_sve_sxtb_h,
gen_helper_sve_sxtb_s,
gen_helper_sve_sxtb_d
};
return do_zpz_ool(s, a, fns[a->esz]);
}
static bool trans_UXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
NULL,
gen_helper_sve_uxtb_h,
gen_helper_sve_uxtb_s,
gen_helper_sve_uxtb_d
};
return do_zpz_ool(s, a, fns[a->esz]);
}
static bool trans_SXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
NULL, NULL,
gen_helper_sve_sxth_s,
gen_helper_sve_sxth_d
};
return do_zpz_ool(s, a, fns[a->esz]);
}
static bool trans_UXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
NULL, NULL,
gen_helper_sve_uxth_s,
gen_helper_sve_uxth_d
};
return do_zpz_ool(s, a, fns[a->esz]);
}
static bool trans_SXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_sxtw_d : NULL);
}
static bool trans_UXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_uxtw_d : NULL);
}
#undef DO_ZPZ
/*
*** SVE Integer Reduction Group
*/
typedef void gen_helper_gvec_reduc(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_i32);
static bool do_vpz_ool(DisasContext *s, arg_rpr_esz *a,
gen_helper_gvec_reduc *fn)
{
unsigned vsz = vec_full_reg_size(s);
TCGv_ptr t_zn, t_pg;
TCGv_i32 desc;
TCGv_i64 temp;
if (fn == NULL) {
return false;
}
if (!sve_access_check(s)) {
return true;
}
desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
temp = tcg_temp_new_i64();
t_zn = tcg_temp_new_ptr();
t_pg = tcg_temp_new_ptr();
tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn));
tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg));
fn(temp, t_zn, t_pg, desc);
tcg_temp_free_ptr(t_zn);
tcg_temp_free_ptr(t_pg);
tcg_temp_free_i32(desc);
write_fp_dreg(s, a->rd, temp);
tcg_temp_free_i64(temp);
return true;
}
#define DO_VPZ(NAME, name) \
static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
{ \
static gen_helper_gvec_reduc * const fns[4] = { \
gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
}; \
return do_vpz_ool(s, a, fns[a->esz]); \
}
DO_VPZ(ORV, orv)
DO_VPZ(ANDV, andv)
DO_VPZ(EORV, eorv)
DO_VPZ(UADDV, uaddv)
DO_VPZ(SMAXV, smaxv)
DO_VPZ(UMAXV, umaxv)
DO_VPZ(SMINV, sminv)
DO_VPZ(UMINV, uminv)
static bool trans_SADDV(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
{
static gen_helper_gvec_reduc * const fns[4] = {
gen_helper_sve_saddv_b, gen_helper_sve_saddv_h,
gen_helper_sve_saddv_s, NULL
};
return do_vpz_ool(s, a, fns[a->esz]);
}
#undef DO_VPZ
/*
*** SVE Shift by Immediate - Predicated Group
*/
/* Store zero into every active element of Zd. We will use this for two
* and three-operand predicated instructions for which logic dictates a
* zero result.
*/
static bool do_clr_zp(DisasContext *s, int rd, int pg, int esz)
{
static gen_helper_gvec_2 * const fns[4] = {
gen_helper_sve_clr_b, gen_helper_sve_clr_h,
gen_helper_sve_clr_s, gen_helper_sve_clr_d,
};
if (sve_access_check(s)) {
unsigned vsz = vec_full_reg_size(s);
tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
pred_full_reg_offset(s, pg),
vsz, vsz, 0, fns[esz]);
}
return true;
}
static bool do_zpzi_ool(DisasContext *s, arg_rpri_esz *a,
gen_helper_gvec_3 *fn)
{
if (sve_access_check(s)) {
unsigned vsz = vec_full_reg_size(s);
tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
pred_full_reg_offset(s, a->pg),
vsz, vsz, a->imm, fn);
}
return true;
}
static bool trans_ASR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
gen_helper_sve_asr_zpzi_b, gen_helper_sve_asr_zpzi_h,
gen_helper_sve_asr_zpzi_s, gen_helper_sve_asr_zpzi_d,
};
if (a->esz < 0) {
/* Invalid tsz encoding -- see tszimm_esz. */
return false;
}
/* Shift by element size is architecturally valid. For
arithmetic right-shift, it's the same as by one less. */
a->imm = MIN(a->imm, (8 << a->esz) - 1);
return do_zpzi_ool(s, a, fns[a->esz]);
}
static bool trans_LSR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
gen_helper_sve_lsr_zpzi_b, gen_helper_sve_lsr_zpzi_h,
gen_helper_sve_lsr_zpzi_s, gen_helper_sve_lsr_zpzi_d,
};
if (a->esz < 0) {
return false;
}
/* Shift by element size is architecturally valid.
For logical shifts, it is a zeroing operation. */
if (a->imm >= (8 << a->esz)) {
return do_clr_zp(s, a->rd, a->pg, a->esz);
} else {
return do_zpzi_ool(s, a, fns[a->esz]);
}
}
static bool trans_LSL_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
gen_helper_sve_lsl_zpzi_b, gen_helper_sve_lsl_zpzi_h,
gen_helper_sve_lsl_zpzi_s, gen_helper_sve_lsl_zpzi_d,
};
if (a->esz < 0) {
return false;
}
/* Shift by element size is architecturally valid.
For logical shifts, it is a zeroing operation. */
if (a->imm >= (8 << a->esz)) {
return do_clr_zp(s, a->rd, a->pg, a->esz);
} else {
return do_zpzi_ool(s, a, fns[a->esz]);
}
}
static bool trans_ASRD(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
{
static gen_helper_gvec_3 * const fns[4] = {
gen_helper_sve_asrd_b, gen_helper_sve_asrd_h,
gen_helper_sve_asrd_s, gen_helper_sve_asrd_d,
};
if (a->esz < 0) {
return false;
}
/* Shift by element size is architecturally valid. For arithmetic
right shift for division, it is a zeroing operation. */
if (a->imm >= (8 << a->esz)) {
return do_clr_zp(s, a->rd, a->pg, a->esz);
} else {
return do_zpzi_ool(s, a, fns[a->esz]);
}
}
/*
*** SVE Bitwise Shift - Predicated Group
*/
#define DO_ZPZW(NAME, name) \
static bool trans_##NAME##_zpzw(DisasContext *s, arg_rprr_esz *a, \
uint32_t insn) \
{ \
static gen_helper_gvec_4 * const fns[3] = { \
gen_helper_sve_##name##_zpzw_b, gen_helper_sve_##name##_zpzw_h, \
gen_helper_sve_##name##_zpzw_s, \
}; \
if (a->esz < 0 || a->esz >= 3) { \
return false; \
} \
return do_zpzz_ool(s, a, fns[a->esz]); \
}
DO_ZPZW(ASR, asr)
DO_ZPZW(LSR, lsr)
DO_ZPZW(LSL, lsl)
#undef DO_ZPZW
/*
*** SVE Bitwise Shift - Unpredicated Group
*/
static bool do_shift_imm(DisasContext *s, arg_rri_esz *a, bool asr,
void (*gvec_fn)(unsigned, uint32_t, uint32_t,
int64_t, uint32_t, uint32_t))
{
if (a->esz < 0) {
/* Invalid tsz encoding -- see tszimm_esz. */
return false;
}
if (sve_access_check(s)) {
unsigned vsz = vec_full_reg_size(s);
/* Shift by element size is architecturally valid. For
arithmetic right-shift, it's the same as by one less.
Otherwise it is a zeroing operation. */
if (a->imm >= 8 << a->esz) {
if (asr) {
a->imm = (8 << a->esz) - 1;
} else {
do_dupi_z(s, a->rd, 0);
return true;
}
}
gvec_fn(a->esz, vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn), a->imm, vsz, vsz);
}
return true;
}
static bool trans_ASR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
{
return do_shift_imm(s, a, true, tcg_gen_gvec_sari);
}
static bool trans_LSR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
{
return do_shift_imm(s, a, false, tcg_gen_gvec_shri);
}
static bool trans_LSL_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
{
return do_shift_imm(s, a, false, tcg_gen_gvec_shli);
}
static bool do_zzw_ool(DisasContext *s, arg_rrr_esz *a, gen_helper_gvec_3 *fn)
{
if (fn == NULL) {
return false;
}
if (sve_access_check(s)) {
unsigned vsz = vec_full_reg_size(s);
tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm),
vsz, vsz, 0, fn);
}
return true;
}
#define DO_ZZW(NAME, name) \
static bool trans_##NAME##_zzw(DisasContext *s, arg_rrr_esz *a, \
uint32_t insn) \
{ \
static gen_helper_gvec_3 * const fns[4] = { \
gen_helper_sve_##name##_zzw_b, gen_helper_sve_##name##_zzw_h, \
gen_helper_sve_##name##_zzw_s, NULL \
}; \
return do_zzw_ool(s, a, fns[a->esz]); \
}
DO_ZZW(ASR, asr)
DO_ZZW(LSR, lsr)
DO_ZZW(LSL, lsl)
#undef DO_ZZW
/*
*** SVE Integer Multiply-Add Group
*/
static bool do_zpzzz_ool(DisasContext *s, arg_rprrr_esz *a,
gen_helper_gvec_5 *fn)
{
if (sve_access_check(s)) {
unsigned vsz = vec_full_reg_size(s);
tcg_gen_gvec_5_ool(vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->ra),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm),
pred_full_reg_offset(s, a->pg),
vsz, vsz, 0, fn);
}
return true;
}
#define DO_ZPZZZ(NAME, name) \
static bool trans_##NAME(DisasContext *s, arg_rprrr_esz *a, uint32_t insn) \
{ \
static gen_helper_gvec_5 * const fns[4] = { \
gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
}; \
return do_zpzzz_ool(s, a, fns[a->esz]); \
}
DO_ZPZZZ(MLA, mla)
DO_ZPZZZ(MLS, mls)
#undef DO_ZPZZZ
/*
*** SVE Index Generation Group
*/
static void do_index(DisasContext *s, int esz, int rd,
TCGv_i64 start, TCGv_i64 incr)
{
unsigned vsz = vec_full_reg_size(s);
TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
TCGv_ptr t_zd = tcg_temp_new_ptr();
tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, rd));
if (esz == 3) {
gen_helper_sve_index_d(t_zd, start, incr, desc);
} else {
typedef void index_fn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
static index_fn * const fns[3] = {
gen_helper_sve_index_b,
gen_helper_sve_index_h,
gen_helper_sve_index_s,
};
TCGv_i32 s32 = tcg_temp_new_i32();
TCGv_i32 i32 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(s32, start);
tcg_gen_extrl_i64_i32(i32, incr);
fns[esz](t_zd, s32, i32, desc);
tcg_temp_free_i32(s32);
tcg_temp_free_i32(i32);
}
tcg_temp_free_ptr(t_zd);
tcg_temp_free_i32(desc);
}
static bool trans_INDEX_ii(DisasContext *s, arg_INDEX_ii *a, uint32_t insn)
{
if (sve_access_check(s)) {
TCGv_i64 start = tcg_const_i64(a->imm1);
TCGv_i64 incr = tcg_const_i64(a->imm2);
do_index(s, a->esz, a->rd, start, incr);
tcg_temp_free_i64(start);
tcg_temp_free_i64(incr);
}
return true;
}
static bool trans_INDEX_ir(DisasContext *s, arg_INDEX_ir *a, uint32_t insn)
{
if (sve_access_check(s)) {
TCGv_i64 start = tcg_const_i64(a->imm);
TCGv_i64 incr = cpu_reg(s, a->rm);
do_index(s, a->esz, a->rd, start, incr);
tcg_temp_free_i64(start);
}
return true;
}
static bool trans_INDEX_ri(DisasContext *s, arg_INDEX_ri *a, uint32_t insn)
{
if (sve_access_check(s)) {
TCGv_i64 start = cpu_reg(s, a->rn);
TCGv_i64 incr = tcg_const_i64(a->imm);
do_index(s, a->esz, a->rd, start, incr);
tcg_temp_free_i64(incr);
}
return true;
}
static bool trans_INDEX_rr(DisasContext *s, arg_INDEX_rr *a, uint32_t insn)
{
if (sve_access_check(s)) {
TCGv_i64 start = cpu_reg(s, a->rn);
TCGv_i64 incr = cpu_reg(s, a->rm);
do_index(s, a->esz, a->rd, start, incr);
}
return true;
}
/*
*** SVE Stack Allocation Group
*/
static bool trans_ADDVL(DisasContext *s, arg_ADDVL *a, uint32_t insn)
{
TCGv_i64 rd = cpu_reg_sp(s, a->rd);
TCGv_i64 rn = cpu_reg_sp(s, a->rn);
tcg_gen_addi_i64(rd, rn, a->imm * vec_full_reg_size(s));
return true;
}
static bool trans_ADDPL(DisasContext *s, arg_ADDPL *a, uint32_t insn)
{
TCGv_i64 rd = cpu_reg_sp(s, a->rd);
TCGv_i64 rn = cpu_reg_sp(s, a->rn);
tcg_gen_addi_i64(rd, rn, a->imm * pred_full_reg_size(s));
return true;
}
static bool trans_RDVL(DisasContext *s, arg_RDVL *a, uint32_t insn)
{
TCGv_i64 reg = cpu_reg(s, a->rd);
tcg_gen_movi_i64(reg, a->imm * vec_full_reg_size(s));
return true;
}
/*
*** SVE Compute Vector Address Group
*/
static bool do_adr(DisasContext *s, arg_rrri *a, gen_helper_gvec_3 *fn)
{
if (sve_access_check(s)) {
unsigned vsz = vec_full_reg_size(s);
tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm),
vsz, vsz, a->imm, fn);
}
return true;
}
static bool trans_ADR_p32(DisasContext *s, arg_rrri *a, uint32_t insn)
{
return do_adr(s, a, gen_helper_sve_adr_p32);
}
static bool trans_ADR_p64(DisasContext *s, arg_rrri *a, uint32_t insn)
{
return do_adr(s, a, gen_helper_sve_adr_p64);
}
static bool trans_ADR_s32(DisasContext *s, arg_rrri *a, uint32_t insn)
{
return do_adr(s, a, gen_helper_sve_adr_s32);
}
static bool trans_ADR_u32(DisasContext *s, arg_rrri *a, uint32_t insn)
{
return do_adr(s, a, gen_helper_sve_adr_u32);
}
/*
*** SVE Predicate Logical Operations Group
*/
static bool do_pppp_flags(DisasContext *s, arg_rprr_s *a,
const GVecGen4 *gvec_op)
{
if (!sve_access_check(s)) {
return true;
}
unsigned psz = pred_gvec_reg_size(s);
int dofs = pred_full_reg_offset(s, a->rd);
int nofs = pred_full_reg_offset(s, a->rn);
int mofs = pred_full_reg_offset(s, a->rm);
int gofs = pred_full_reg_offset(s, a->pg);
if (psz == 8) {
/* Do the operation and the flags generation in temps. */
TCGv_i64 pd = tcg_temp_new_i64();
TCGv_i64 pn = tcg_temp_new_i64();
TCGv_i64 pm = tcg_temp_new_i64();
TCGv_i64 pg = tcg_temp_new_i64();
tcg_gen_ld_i64(pn, cpu_env, nofs);
tcg_gen_ld_i64(pm, cpu_env, mofs);
tcg_gen_ld_i64(pg, cpu_env, gofs);
gvec_op->fni8(pd, pn, pm, pg);
tcg_gen_st_i64(pd, cpu_env, dofs);
do_predtest1(pd, pg);
tcg_temp_free_i64(pd);
tcg_temp_free_i64(pn);
tcg_temp_free_i64(pm);
tcg_temp_free_i64(pg);
} else {
/* The operation and flags generation is large. The computation
* of the flags depends on the original contents of the guarding
* predicate. If the destination overwrites the guarding predicate,
* then the easiest way to get this right is to save a copy.
*/
int tofs = gofs;
if (a->rd == a->pg) {
tofs = offsetof(CPUARMState, vfp.preg_tmp);
tcg_gen_gvec_mov(0, tofs, gofs, psz, psz);
}
tcg_gen_gvec_4(dofs, nofs, mofs, gofs, psz, psz, gvec_op);
do_predtest(s, dofs, tofs, psz / 8);
}
return true;
}
static void gen_and_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_and_i64(pd, pn, pm);
tcg_gen_and_i64(pd, pd, pg);
}
static void gen_and_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_and_vec(vece, pd, pn, pm);
tcg_gen_and_vec(vece, pd, pd, pg);
}
static bool trans_AND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
.fni8 = gen_and_pg_i64,
.fniv = gen_and_pg_vec,
.fno = gen_helper_sve_and_pppp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else if (a->rn == a->rm) {
if (a->pg == a->rn) {
return do_mov_p(s, a->rd, a->rn);
} else {
return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->pg);
}
} else if (a->pg == a->rn || a->pg == a->rm) {
return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_bic_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_andc_i64(pd, pn, pm);
tcg_gen_and_i64(pd, pd, pg);
}
static void gen_bic_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_andc_vec(vece, pd, pn, pm);
tcg_gen_and_vec(vece, pd, pd, pg);
}
static bool trans_BIC_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
.fni8 = gen_bic_pg_i64,
.fniv = gen_bic_pg_vec,
.fno = gen_helper_sve_bic_pppp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else if (a->pg == a->rn) {
return do_vector3_p(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_eor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_xor_i64(pd, pn, pm);
tcg_gen_and_i64(pd, pd, pg);
}
static void gen_eor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_xor_vec(vece, pd, pn, pm);
tcg_gen_and_vec(vece, pd, pd, pg);
}
static bool trans_EOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
.fni8 = gen_eor_pg_i64,
.fniv = gen_eor_pg_vec,
.fno = gen_helper_sve_eor_pppp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_sel_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_and_i64(pn, pn, pg);
tcg_gen_andc_i64(pm, pm, pg);
tcg_gen_or_i64(pd, pn, pm);
}
static void gen_sel_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_and_vec(vece, pn, pn, pg);
tcg_gen_andc_vec(vece, pm, pm, pg);
tcg_gen_or_vec(vece, pd, pn, pm);
}
static bool trans_SEL_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
.fni8 = gen_sel_pg_i64,
.fniv = gen_sel_pg_vec,
.fno = gen_helper_sve_sel_pppp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return false;
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_orr_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_or_i64(pd, pn, pm);
tcg_gen_and_i64(pd, pd, pg);
}
static void gen_orr_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_or_vec(vece, pd, pn, pm);
tcg_gen_and_vec(vece, pd, pd, pg);
}
static bool trans_ORR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
.fni8 = gen_orr_pg_i64,
.fniv = gen_orr_pg_vec,
.fno = gen_helper_sve_orr_pppp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else if (a->pg == a->rn && a->rn == a->rm) {
return do_mov_p(s, a->rd, a->rn);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_orn_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_orc_i64(pd, pn, pm);
tcg_gen_and_i64(pd, pd, pg);
}
static void gen_orn_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_orc_vec(vece, pd, pn, pm);
tcg_gen_and_vec(vece, pd, pd, pg);
}
static bool trans_ORN_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
.fni8 = gen_orn_pg_i64,
.fniv = gen_orn_pg_vec,
.fno = gen_helper_sve_orn_pppp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_nor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_or_i64(pd, pn, pm);
tcg_gen_andc_i64(pd, pg, pd);
}
static void gen_nor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_or_vec(vece, pd, pn, pm);
tcg_gen_andc_vec(vece, pd, pg, pd);
}
static bool trans_NOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
.fni8 = gen_nor_pg_i64,
.fniv = gen_nor_pg_vec,
.fno = gen_helper_sve_nor_pppp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
static void gen_nand_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
{
tcg_gen_and_i64(pd, pn, pm);
tcg_gen_andc_i64(pd, pg, pd);
}
static void gen_nand_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
TCGv_vec pm, TCGv_vec pg)
{
tcg_gen_and_vec(vece, pd, pn, pm);
tcg_gen_andc_vec(vece, pd, pg, pd);
}
static bool trans_NAND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
{
static const GVecGen4 op = {
.fni8 = gen_nand_pg_i64,
.fniv = gen_nand_pg_vec,
.fno = gen_helper_sve_nand_pppp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
if (a->s) {
return do_pppp_flags(s, a, &op);
} else {
return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
}
}
/*
*** SVE Predicate Misc Group
*/
static bool trans_PTEST(DisasContext *s, arg_PTEST *a, uint32_t insn)
{
if (sve_access_check(s)) {
int nofs = pred_full_reg_offset(s, a->rn);
int gofs = pred_full_reg_offset(s, a->pg);
int words = DIV_ROUND_UP(pred_full_reg_size(s), 8);
if (words == 1) {
TCGv_i64 pn = tcg_temp_new_i64();
TCGv_i64 pg = tcg_temp_new_i64();
tcg_gen_ld_i64(pn, cpu_env, nofs);
tcg_gen_ld_i64(pg, cpu_env, gofs);
do_predtest1(pn, pg);
tcg_temp_free_i64(pn);
tcg_temp_free_i64(pg);
} else {
do_predtest(s, nofs, gofs, words);
}
}
return true;
}
/* See the ARM pseudocode DecodePredCount. */
static unsigned decode_pred_count(unsigned fullsz, int pattern, int esz)
{
unsigned elements = fullsz >> esz;
unsigned bound;
switch (pattern) {
case 0x0: /* POW2 */
return pow2floor(elements);
case 0x1: /* VL1 */
case 0x2: /* VL2 */
case 0x3: /* VL3 */
case 0x4: /* VL4 */
case 0x5: /* VL5 */
case 0x6: /* VL6 */
case 0x7: /* VL7 */
case 0x8: /* VL8 */
bound = pattern;
break;
case 0x9: /* VL16 */
case 0xa: /* VL32 */
case 0xb: /* VL64 */
case 0xc: /* VL128 */
case 0xd: /* VL256 */
bound = 16 << (pattern - 9);
break;
case 0x1d: /* MUL4 */
return elements - elements % 4;
case 0x1e: /* MUL3 */
return elements - elements % 3;
case 0x1f: /* ALL */
return elements;
default: /* #uimm5 */
return 0;
}
return elements >= bound ? bound : 0;
}
/* This handles all of the predicate initialization instructions,
* PTRUE, PFALSE, SETFFR. For PFALSE, we will have set PAT == 32
* so that decode_pred_count returns 0. For SETFFR, we will have
* set RD == 16 == FFR.
*/
static bool do_predset(DisasContext *s, int esz, int rd, int pat, bool setflag)
{
if (!sve_access_check(s)) {
return true;
}
unsigned fullsz = vec_full_reg_size(s);
unsigned ofs = pred_full_reg_offset(s, rd);
unsigned numelem, setsz, i;
uint64_t word, lastword;
TCGv_i64 t;
numelem = decode_pred_count(fullsz, pat, esz);
/* Determine what we must store into each bit, and how many. */
if (numelem == 0) {
lastword = word = 0;
setsz = fullsz;
} else {
setsz = numelem << esz;
lastword = word = pred_esz_masks[esz];
if (setsz % 64) {
lastword &= ~(-1ull << (setsz % 64));
}
}
t = tcg_temp_new_i64();
if (fullsz <= 64) {
tcg_gen_movi_i64(t, lastword);
tcg_gen_st_i64(t, cpu_env, ofs);
goto done;
}
if (word == lastword) {
unsigned maxsz = size_for_gvec(fullsz / 8);
unsigned oprsz = size_for_gvec(setsz / 8);
if (oprsz * 8 == setsz) {
tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word);
goto done;
}
if (oprsz * 8 == setsz + 8) {
tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word);
tcg_gen_movi_i64(t, 0);
tcg_gen_st_i64(t, cpu_env, ofs + oprsz - 8);
goto done;
}
}
setsz /= 8;
fullsz /= 8;
tcg_gen_movi_i64(t, word);
for (i = 0; i < setsz; i += 8) {
tcg_gen_st_i64(t, cpu_env, ofs + i);
}
if (lastword != word) {
tcg_gen_movi_i64(t, lastword);
tcg_gen_st_i64(t, cpu_env, ofs + i);
i += 8;
}
if (i < fullsz) {
tcg_gen_movi_i64(t, 0);
for (; i < fullsz; i += 8) {
tcg_gen_st_i64(t, cpu_env, ofs + i);
}
}
done:
tcg_temp_free_i64(t);
/* PTRUES */
if (setflag) {
tcg_gen_movi_i32(cpu_NF, -(word != 0));
tcg_gen_movi_i32(cpu_CF, word == 0);
tcg_gen_movi_i32(cpu_VF, 0);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
}
return true;
}
static bool trans_PTRUE(DisasContext *s, arg_PTRUE *a, uint32_t insn)
{
return do_predset(s, a->esz, a->rd, a->pat, a->s);
}
static bool trans_SETFFR(DisasContext *s, arg_SETFFR *a, uint32_t insn)
{
/* Note pat == 31 is #all, to set all elements. */
return do_predset(s, 0, FFR_PRED_NUM, 31, false);
}
static bool trans_PFALSE(DisasContext *s, arg_PFALSE *a, uint32_t insn)
{
/* Note pat == 32 is #unimp, to set no elements. */
return do_predset(s, 0, a->rd, 32, false);
}
static bool trans_RDFFR_p(DisasContext *s, arg_RDFFR_p *a, uint32_t insn)
{
/* The path through do_pppp_flags is complicated enough to want to avoid
* duplication. Frob the arguments into the form of a predicated AND.
*/
arg_rprr_s alt_a = {
.rd = a->rd, .pg = a->pg, .s = a->s,
.rn = FFR_PRED_NUM, .rm = FFR_PRED_NUM,
};
return trans_AND_pppp(s, &alt_a, insn);
}
static bool trans_RDFFR(DisasContext *s, arg_RDFFR *a, uint32_t insn)
{
return do_mov_p(s, a->rd, FFR_PRED_NUM);
}
static bool trans_WRFFR(DisasContext *s, arg_WRFFR *a, uint32_t insn)
{
return do_mov_p(s, FFR_PRED_NUM, a->rn);
}
static bool do_pfirst_pnext(DisasContext *s, arg_rr_esz *a,
void (*gen_fn)(TCGv_i32, TCGv_ptr,
TCGv_ptr, TCGv_i32))
{
if (!sve_access_check(s)) {
return true;
}
TCGv_ptr t_pd = tcg_temp_new_ptr();
TCGv_ptr t_pg = tcg_temp_new_ptr();
TCGv_i32 t;
unsigned desc;
desc = DIV_ROUND_UP(pred_full_reg_size(s), 8);
desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
tcg_gen_addi_ptr(t_pd, cpu_env, pred_full_reg_offset(s, a->rd));
tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->rn));
t = tcg_const_i32(desc);
gen_fn(t, t_pd, t_pg, t);
tcg_temp_free_ptr(t_pd);
tcg_temp_free_ptr(t_pg);
do_pred_flags(t);
tcg_temp_free_i32(t);
return true;
}
static bool trans_PFIRST(DisasContext *s, arg_rr_esz *a, uint32_t insn)
{
return do_pfirst_pnext(s, a, gen_helper_sve_pfirst);
}
static bool trans_PNEXT(DisasContext *s, arg_rr_esz *a, uint32_t insn)
{
return do_pfirst_pnext(s, a, gen_helper_sve_pnext);
}
/*
*** SVE Memory - 32-bit Gather and Unsized Contiguous Group
*/
/* Subroutine loading a vector register at VOFS of LEN bytes.
* The load should begin at the address Rn + IMM.
*/
static void do_ldr(DisasContext *s, uint32_t vofs, uint32_t len,
int rn, int imm)
{
uint32_t len_align = QEMU_ALIGN_DOWN(len, 8);
uint32_t len_remain = len % 8;
uint32_t nparts = len / 8 + ctpop8(len_remain);
int midx = get_mem_index(s);
TCGv_i64 addr, t0, t1;
addr = tcg_temp_new_i64();
t0 = tcg_temp_new_i64();
/* Note that unpredicated load/store of vector/predicate registers
* are defined as a stream of bytes, which equates to little-endian
* operations on larger quantities. There is no nice way to force
* a little-endian load for aarch64_be-linux-user out of line.
*
* Attempt to keep code expansion to a minimum by limiting the
* amount of unrolling done.
*/
if (nparts <= 4) {
int i;
for (i = 0; i < len_align; i += 8) {
tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + i);
tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ);
tcg_gen_st_i64(t0, cpu_env, vofs + i);
}
} else {
TCGLabel *loop = gen_new_label();
TCGv_ptr tp, i = tcg_const_local_ptr(0);
gen_set_label(loop);
/* Minimize the number of local temps that must be re-read from
* the stack each iteration. Instead, re-compute values other
* than the loop counter.
*/
tp = tcg_temp_new_ptr();
tcg_gen_addi_ptr(tp, i, imm);
tcg_gen_extu_ptr_i64(addr, tp);
tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, rn));
tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ);
tcg_gen_add_ptr(tp, cpu_env, i);
tcg_gen_addi_ptr(i, i, 8);
tcg_gen_st_i64(t0, tp, vofs);
tcg_temp_free_ptr(tp);
tcg_gen_brcondi_ptr(TCG_COND_LTU, i, len_align, loop);
tcg_temp_free_ptr(i);
}
/* Predicate register loads can be any multiple of 2.
* Note that we still store the entire 64-bit unit into cpu_env.
*/
if (len_remain) {
tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + len_align);
switch (len_remain) {
case 2:
case 4:
case 8:
tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LE | ctz32(len_remain));
break;
case 6:
t1 = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEUL);
tcg_gen_addi_i64(addr, addr, 4);
tcg_gen_qemu_ld_i64(t1, addr, midx, MO_LEUW);
tcg_gen_deposit_i64(t0, t0, t1, 32, 32);
tcg_temp_free_i64(t1);
break;
default:
g_assert_not_reached();
}
tcg_gen_st_i64(t0, cpu_env, vofs + len_align);
}
tcg_temp_free_i64(addr);
tcg_temp_free_i64(t0);
}
static bool trans_LDR_zri(DisasContext *s, arg_rri *a, uint32_t insn)
{
if (sve_access_check(s)) {
int size = vec_full_reg_size(s);
int off = vec_full_reg_offset(s, a->rd);
do_ldr(s, off, size, a->rn, a->imm * size);
}
return true;
}
static bool trans_LDR_pri(DisasContext *s, arg_rri *a, uint32_t insn)
{
if (sve_access_check(s)) {
int size = pred_full_reg_size(s);
int off = pred_full_reg_offset(s, a->rd);
do_ldr(s, off, size, a->rn, a->imm * size);
}
return true;
}
|