aboutsummaryrefslogtreecommitdiff
path: root/target/arm/tlb_helper.c
blob: 6421e16202e531ffa8399eddc9a270e0e801b0bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*
 * ARM TLB (Translation lookaside buffer) helpers.
 *
 * This code is licensed under the GNU GPL v2 or later.
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"

static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
                                            unsigned int target_el,
                                            bool same_el, bool ea,
                                            bool s1ptw, bool is_write,
                                            int fsc)
{
    uint32_t syn;

    /*
     * ISV is only set for data aborts routed to EL2 and
     * never for stage-1 page table walks faulting on stage 2.
     *
     * Furthermore, ISV is only set for certain kinds of load/stores.
     * If the template syndrome does not have ISV set, we should leave
     * it cleared.
     *
     * See ARMv8 specs, D7-1974:
     * ISS encoding for an exception from a Data Abort, the
     * ISV field.
     */
    if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
        syn = syn_data_abort_no_iss(same_el, 0,
                                    ea, 0, s1ptw, is_write, fsc);
    } else {
        /*
         * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
         * syndrome created at translation time.
         * Now we create the runtime syndrome with the remaining fields.
         */
        syn = syn_data_abort_with_iss(same_el,
                                      0, 0, 0, 0, 0,
                                      ea, 0, s1ptw, is_write, fsc,
                                      true);
        /* Merge the runtime syndrome with the template syndrome.  */
        syn |= template_syn;
    }
    return syn;
}

static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
                                int target_el, int mmu_idx, uint32_t *ret_fsc)
{
    ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
    uint32_t fsr, fsc;

    if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
        arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
        /*
         * LPAE format fault status register : bottom 6 bits are
         * status code in the same form as needed for syndrome
         */
        fsr = arm_fi_to_lfsc(fi);
        fsc = extract32(fsr, 0, 6);
    } else {
        fsr = arm_fi_to_sfsc(fi);
        /*
         * Short format FSR : this fault will never actually be reported
         * to an EL that uses a syndrome register. Use a (currently)
         * reserved FSR code in case the constructed syndrome does leak
         * into the guest somehow.
         */
        fsc = 0x3f;
    }

    *ret_fsc = fsc;
    return fsr;
}

static G_NORETURN
void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
                       MMUAccessType access_type,
                       int mmu_idx, ARMMMUFaultInfo *fi)
{
    CPUARMState *env = &cpu->env;
    int target_el;
    bool same_el;
    uint32_t syn, exc, fsr, fsc;

    target_el = exception_target_el(env);
    if (fi->stage2) {
        target_el = 2;
        env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
        if (arm_is_secure_below_el3(env) && fi->s1ns) {
            env->cp15.hpfar_el2 |= HPFAR_NS;
        }
    }
    same_el = (arm_current_el(env) == target_el);

    fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);

    if (access_type == MMU_INST_FETCH) {
        syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
        exc = EXCP_PREFETCH_ABORT;
    } else {
        syn = merge_syn_data_abort(env->exception.syndrome, target_el,
                                   same_el, fi->ea, fi->s1ptw,
                                   access_type == MMU_DATA_STORE,
                                   fsc);
        if (access_type == MMU_DATA_STORE
            && arm_feature(env, ARM_FEATURE_V6)) {
            fsr |= (1 << 11);
        }
        exc = EXCP_DATA_ABORT;
    }

    env->exception.vaddress = addr;
    env->exception.fsr = fsr;
    raise_exception(env, exc, syn, target_el);
}

/* Raise a data fault alignment exception for the specified virtual address */
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
                                 MMUAccessType access_type,
                                 int mmu_idx, uintptr_t retaddr)
{
    ARMCPU *cpu = ARM_CPU(cs);
    ARMMMUFaultInfo fi = {};

    /* now we have a real cpu fault */
    cpu_restore_state(cs, retaddr, true);

    fi.type = ARMFault_Alignment;
    arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
}

void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc)
{
    ARMMMUFaultInfo fi = { .type = ARMFault_Alignment };
    int target_el = exception_target_el(env);
    int mmu_idx = cpu_mmu_index(env, true);
    uint32_t fsc;

    env->exception.vaddress = pc;

    /*
     * Note that the fsc is not applicable to this exception,
     * since any syndrome is pcalignment not insn_abort.
     */
    env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc);
    raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el);
}

#if !defined(CONFIG_USER_ONLY)

/*
 * arm_cpu_do_transaction_failed: handle a memory system error response
 * (eg "no device/memory present at address") by raising an external abort
 * exception
 */
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
                                   vaddr addr, unsigned size,
                                   MMUAccessType access_type,
                                   int mmu_idx, MemTxAttrs attrs,
                                   MemTxResult response, uintptr_t retaddr)
{
    ARMCPU *cpu = ARM_CPU(cs);
    ARMMMUFaultInfo fi = {};

    /* now we have a real cpu fault */
    cpu_restore_state(cs, retaddr, true);

    fi.ea = arm_extabort_type(response);
    fi.type = ARMFault_SyncExternal;
    arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
}

bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
                      MMUAccessType access_type, int mmu_idx,
                      bool probe, uintptr_t retaddr)
{
    ARMCPU *cpu = ARM_CPU(cs);
    ARMMMUFaultInfo fi = {};
    hwaddr phys_addr;
    target_ulong page_size;
    int prot, ret;
    MemTxAttrs attrs = {};
    ARMCacheAttrs cacheattrs = {};

    /*
     * Walk the page table and (if the mapping exists) add the page
     * to the TLB.  On success, return true.  Otherwise, if probing,
     * return false.  Otherwise populate fsr with ARM DFSR/IFSR fault
     * register format, and signal the fault.
     */
    ret = get_phys_addr(&cpu->env, address, access_type,
                        core_to_arm_mmu_idx(&cpu->env, mmu_idx),
                        &phys_addr, &attrs, &prot, &page_size,
                        &fi, &cacheattrs);
    if (likely(!ret)) {
        /*
         * Map a single [sub]page. Regions smaller than our declared
         * target page size are handled specially, so for those we
         * pass in the exact addresses.
         */
        if (page_size >= TARGET_PAGE_SIZE) {
            phys_addr &= TARGET_PAGE_MASK;
            address &= TARGET_PAGE_MASK;
        }
        /* Notice and record tagged memory. */
        if (cpu_isar_feature(aa64_mte, cpu) && cacheattrs.attrs == 0xf0) {
            arm_tlb_mte_tagged(&attrs) = true;
        }

        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
        return true;
    } else if (probe) {
        return false;
    } else {
        /* now we have a real cpu fault */
        cpu_restore_state(cs, retaddr, true);
        arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
    }
}
#else
void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr,
                            MMUAccessType access_type,
                            bool maperr, uintptr_t ra)
{
    ARMMMUFaultInfo fi = {
        .type = maperr ? ARMFault_Translation : ARMFault_Permission,
        .level = 3,
    };
    ARMCPU *cpu = ARM_CPU(cs);

    /*
     * We report both ESR and FAR to signal handlers.
     * For now, it's easiest to deliver the fault normally.
     */
    cpu_restore_state(cs, ra, true);
    arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi);
}

void arm_cpu_record_sigbus(CPUState *cs, vaddr addr,
                           MMUAccessType access_type, uintptr_t ra)
{
    arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra);
}
#endif /* !defined(CONFIG_USER_ONLY) */