aboutsummaryrefslogtreecommitdiff
path: root/target/arm/tcg/helper-a64.c
blob: 84f54750fc227a960e2bb6b0b2ed01b2f0f2a04d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
/*
 *  AArch64 specific helpers
 *
 *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "cpu.h"
#include "gdbstub/helpers.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/bitops.h"
#include "internals.h"
#include "qemu/crc32c.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "qemu/int128.h"
#include "qemu/atomic128.h"
#include "fpu/softfloat.h"
#include <zlib.h> /* For crc32 */

/* C2.4.7 Multiply and divide */
/* special cases for 0 and LLONG_MIN are mandated by the standard */
uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
{
    if (den == 0) {
        return 0;
    }
    return num / den;
}

int64_t HELPER(sdiv64)(int64_t num, int64_t den)
{
    if (den == 0) {
        return 0;
    }
    if (num == LLONG_MIN && den == -1) {
        return LLONG_MIN;
    }
    return num / den;
}

uint64_t HELPER(rbit64)(uint64_t x)
{
    return revbit64(x);
}

void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
{
    update_spsel(env, imm);
}

static void daif_check(CPUARMState *env, uint32_t op,
                       uint32_t imm, uintptr_t ra)
{
    /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set.  */
    if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
        raise_exception_ra(env, EXCP_UDEF,
                           syn_aa64_sysregtrap(0, extract32(op, 0, 3),
                                               extract32(op, 3, 3), 4,
                                               imm, 0x1f, 0),
                           exception_target_el(env), ra);
    }
}

void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
{
    daif_check(env, 0x1e, imm, GETPC());
    env->daif |= (imm << 6) & PSTATE_DAIF;
    arm_rebuild_hflags(env);
}

void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
{
    daif_check(env, 0x1f, imm, GETPC());
    env->daif &= ~((imm << 6) & PSTATE_DAIF);
    arm_rebuild_hflags(env);
}

/* Convert a softfloat float_relation_ (as returned by
 * the float*_compare functions) to the correct ARM
 * NZCV flag state.
 */
static inline uint32_t float_rel_to_flags(int res)
{
    uint64_t flags;
    switch (res) {
    case float_relation_equal:
        flags = PSTATE_Z | PSTATE_C;
        break;
    case float_relation_less:
        flags = PSTATE_N;
        break;
    case float_relation_greater:
        flags = PSTATE_C;
        break;
    case float_relation_unordered:
    default:
        flags = PSTATE_C | PSTATE_V;
        break;
    }
    return flags;
}

uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
{
    return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
}

uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
{
    return float_rel_to_flags(float16_compare(x, y, fp_status));
}

uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
{
    return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
}

uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
{
    return float_rel_to_flags(float32_compare(x, y, fp_status));
}

uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
{
    return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
}

uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
{
    return float_rel_to_flags(float64_compare(x, y, fp_status));
}

float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float32_squash_input_denormal(a, fpst);
    b = float32_squash_input_denormal(b, fpst);

    if ((float32_is_zero(a) && float32_is_infinity(b)) ||
        (float32_is_infinity(a) && float32_is_zero(b))) {
        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
        return make_float32((1U << 30) |
                            ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
    }
    return float32_mul(a, b, fpst);
}

float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float64_squash_input_denormal(a, fpst);
    b = float64_squash_input_denormal(b, fpst);

    if ((float64_is_zero(a) && float64_is_infinity(b)) ||
        (float64_is_infinity(a) && float64_is_zero(b))) {
        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
        return make_float64((1ULL << 62) |
                            ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
    }
    return float64_mul(a, b, fpst);
}

/* 64bit/double versions of the neon float compare functions */
uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;
    return -float64_eq_quiet(a, b, fpst);
}

uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;
    return -float64_le(b, a, fpst);
}

uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;
    return -float64_lt(b, a, fpst);
}

/* Reciprocal step and sqrt step. Note that unlike the A32/T32
 * versions, these do a fully fused multiply-add or
 * multiply-add-and-halve.
 */

uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float16_squash_input_denormal(a, fpst);
    b = float16_squash_input_denormal(b, fpst);

    a = float16_chs(a);
    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
        (float16_is_infinity(b) && float16_is_zero(a))) {
        return float16_two;
    }
    return float16_muladd(a, b, float16_two, 0, fpst);
}

float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float32_squash_input_denormal(a, fpst);
    b = float32_squash_input_denormal(b, fpst);

    a = float32_chs(a);
    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
        (float32_is_infinity(b) && float32_is_zero(a))) {
        return float32_two;
    }
    return float32_muladd(a, b, float32_two, 0, fpst);
}

float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float64_squash_input_denormal(a, fpst);
    b = float64_squash_input_denormal(b, fpst);

    a = float64_chs(a);
    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
        (float64_is_infinity(b) && float64_is_zero(a))) {
        return float64_two;
    }
    return float64_muladd(a, b, float64_two, 0, fpst);
}

uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float16_squash_input_denormal(a, fpst);
    b = float16_squash_input_denormal(b, fpst);

    a = float16_chs(a);
    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
        (float16_is_infinity(b) && float16_is_zero(a))) {
        return float16_one_point_five;
    }
    return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
}

float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float32_squash_input_denormal(a, fpst);
    b = float32_squash_input_denormal(b, fpst);

    a = float32_chs(a);
    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
        (float32_is_infinity(b) && float32_is_zero(a))) {
        return float32_one_point_five;
    }
    return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
}

float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float64_squash_input_denormal(a, fpst);
    b = float64_squash_input_denormal(b, fpst);

    a = float64_chs(a);
    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
        (float64_is_infinity(b) && float64_is_zero(a))) {
        return float64_one_point_five;
    }
    return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
}

/* Pairwise long add: add pairs of adjacent elements into
 * double-width elements in the result (eg _s8 is an 8x8->16 op)
 */
uint64_t HELPER(neon_addlp_s8)(uint64_t a)
{
    uint64_t nsignmask = 0x0080008000800080ULL;
    uint64_t wsignmask = 0x8000800080008000ULL;
    uint64_t elementmask = 0x00ff00ff00ff00ffULL;
    uint64_t tmp1, tmp2;
    uint64_t res, signres;

    /* Extract odd elements, sign extend each to a 16 bit field */
    tmp1 = a & elementmask;
    tmp1 ^= nsignmask;
    tmp1 |= wsignmask;
    tmp1 = (tmp1 - nsignmask) ^ wsignmask;
    /* Ditto for the even elements */
    tmp2 = (a >> 8) & elementmask;
    tmp2 ^= nsignmask;
    tmp2 |= wsignmask;
    tmp2 = (tmp2 - nsignmask) ^ wsignmask;

    /* calculate the result by summing bits 0..14, 16..22, etc,
     * and then adjusting the sign bits 15, 23, etc manually.
     * This ensures the addition can't overflow the 16 bit field.
     */
    signres = (tmp1 ^ tmp2) & wsignmask;
    res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
    res ^= signres;

    return res;
}

uint64_t HELPER(neon_addlp_u8)(uint64_t a)
{
    uint64_t tmp;

    tmp = a & 0x00ff00ff00ff00ffULL;
    tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
    return tmp;
}

uint64_t HELPER(neon_addlp_s16)(uint64_t a)
{
    int32_t reslo, reshi;

    reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
    reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);

    return (uint32_t)reslo | (((uint64_t)reshi) << 32);
}

uint64_t HELPER(neon_addlp_u16)(uint64_t a)
{
    uint64_t tmp;

    tmp = a & 0x0000ffff0000ffffULL;
    tmp += (a >> 16) & 0x0000ffff0000ffffULL;
    return tmp;
}

/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
{
    float_status *fpst = fpstp;
    uint16_t val16, sbit;
    int16_t exp;

    if (float16_is_any_nan(a)) {
        float16 nan = a;
        if (float16_is_signaling_nan(a, fpst)) {
            float_raise(float_flag_invalid, fpst);
            if (!fpst->default_nan_mode) {
                nan = float16_silence_nan(a, fpst);
            }
        }
        if (fpst->default_nan_mode) {
            nan = float16_default_nan(fpst);
        }
        return nan;
    }

    a = float16_squash_input_denormal(a, fpst);

    val16 = float16_val(a);
    sbit = 0x8000 & val16;
    exp = extract32(val16, 10, 5);

    if (exp == 0) {
        return make_float16(deposit32(sbit, 10, 5, 0x1e));
    } else {
        return make_float16(deposit32(sbit, 10, 5, ~exp));
    }
}

float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
{
    float_status *fpst = fpstp;
    uint32_t val32, sbit;
    int32_t exp;

    if (float32_is_any_nan(a)) {
        float32 nan = a;
        if (float32_is_signaling_nan(a, fpst)) {
            float_raise(float_flag_invalid, fpst);
            if (!fpst->default_nan_mode) {
                nan = float32_silence_nan(a, fpst);
            }
        }
        if (fpst->default_nan_mode) {
            nan = float32_default_nan(fpst);
        }
        return nan;
    }

    a = float32_squash_input_denormal(a, fpst);

    val32 = float32_val(a);
    sbit = 0x80000000ULL & val32;
    exp = extract32(val32, 23, 8);

    if (exp == 0) {
        return make_float32(sbit | (0xfe << 23));
    } else {
        return make_float32(sbit | (~exp & 0xff) << 23);
    }
}

float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
{
    float_status *fpst = fpstp;
    uint64_t val64, sbit;
    int64_t exp;

    if (float64_is_any_nan(a)) {
        float64 nan = a;
        if (float64_is_signaling_nan(a, fpst)) {
            float_raise(float_flag_invalid, fpst);
            if (!fpst->default_nan_mode) {
                nan = float64_silence_nan(a, fpst);
            }
        }
        if (fpst->default_nan_mode) {
            nan = float64_default_nan(fpst);
        }
        return nan;
    }

    a = float64_squash_input_denormal(a, fpst);

    val64 = float64_val(a);
    sbit = 0x8000000000000000ULL & val64;
    exp = extract64(float64_val(a), 52, 11);

    if (exp == 0) {
        return make_float64(sbit | (0x7feULL << 52));
    } else {
        return make_float64(sbit | (~exp & 0x7ffULL) << 52);
    }
}

float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
{
    /* Von Neumann rounding is implemented by using round-to-zero
     * and then setting the LSB of the result if Inexact was raised.
     */
    float32 r;
    float_status *fpst = &env->vfp.fp_status;
    float_status tstat = *fpst;
    int exflags;

    set_float_rounding_mode(float_round_to_zero, &tstat);
    set_float_exception_flags(0, &tstat);
    r = float64_to_float32(a, &tstat);
    exflags = get_float_exception_flags(&tstat);
    if (exflags & float_flag_inexact) {
        r = make_float32(float32_val(r) | 1);
    }
    exflags |= get_float_exception_flags(fpst);
    set_float_exception_flags(exflags, fpst);
    return r;
}

/* 64-bit versions of the CRC helpers. Note that although the operation
 * (and the prototypes of crc32c() and crc32() mean that only the bottom
 * 32 bits of the accumulator and result are used, we pass and return
 * uint64_t for convenience of the generated code. Unlike the 32-bit
 * instruction set versions, val may genuinely have 64 bits of data in it.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
    uint8_t buf[8];

    stq_le_p(buf, val);

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
    uint8_t buf[8];

    stq_le_p(buf, val);

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}

/*
 * AdvSIMD half-precision
 */

#define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))

#define ADVSIMD_HALFOP(name) \
uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    return float16_ ## name(a, b, fpst);    \
}

ADVSIMD_HALFOP(add)
ADVSIMD_HALFOP(sub)
ADVSIMD_HALFOP(mul)
ADVSIMD_HALFOP(div)
ADVSIMD_HALFOP(min)
ADVSIMD_HALFOP(max)
ADVSIMD_HALFOP(minnum)
ADVSIMD_HALFOP(maxnum)

#define ADVSIMD_TWOHALFOP(name)                                         \
uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
{ \
    float16  a1, a2, b1, b2;                        \
    uint32_t r1, r2;                                \
    float_status *fpst = fpstp;                     \
    a1 = extract32(two_a, 0, 16);                   \
    a2 = extract32(two_a, 16, 16);                  \
    b1 = extract32(two_b, 0, 16);                   \
    b2 = extract32(two_b, 16, 16);                  \
    r1 = float16_ ## name(a1, b1, fpst);            \
    r2 = float16_ ## name(a2, b2, fpst);            \
    return deposit32(r1, 16, 16, r2);               \
}

ADVSIMD_TWOHALFOP(add)
ADVSIMD_TWOHALFOP(sub)
ADVSIMD_TWOHALFOP(mul)
ADVSIMD_TWOHALFOP(div)
ADVSIMD_TWOHALFOP(min)
ADVSIMD_TWOHALFOP(max)
ADVSIMD_TWOHALFOP(minnum)
ADVSIMD_TWOHALFOP(maxnum)

/* Data processing - scalar floating-point and advanced SIMD */
static float16 float16_mulx(float16 a, float16 b, void *fpstp)
{
    float_status *fpst = fpstp;

    a = float16_squash_input_denormal(a, fpst);
    b = float16_squash_input_denormal(b, fpst);

    if ((float16_is_zero(a) && float16_is_infinity(b)) ||
        (float16_is_infinity(a) && float16_is_zero(b))) {
        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
        return make_float16((1U << 14) |
                            ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
    }
    return float16_mul(a, b, fpst);
}

ADVSIMD_HALFOP(mulx)
ADVSIMD_TWOHALFOP(mulx)

/* fused multiply-accumulate */
uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
                                 void *fpstp)
{
    float_status *fpst = fpstp;
    return float16_muladd(a, b, c, 0, fpst);
}

uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
                                  uint32_t two_c, void *fpstp)
{
    float_status *fpst = fpstp;
    float16  a1, a2, b1, b2, c1, c2;
    uint32_t r1, r2;
    a1 = extract32(two_a, 0, 16);
    a2 = extract32(two_a, 16, 16);
    b1 = extract32(two_b, 0, 16);
    b2 = extract32(two_b, 16, 16);
    c1 = extract32(two_c, 0, 16);
    c2 = extract32(two_c, 16, 16);
    r1 = float16_muladd(a1, b1, c1, 0, fpst);
    r2 = float16_muladd(a2, b2, c2, 0, fpst);
    return deposit32(r1, 16, 16, r2);
}

/*
 * Floating point comparisons produce an integer result. Softfloat
 * routines return float_relation types which we convert to the 0/-1
 * Neon requires.
 */

#define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0

uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    int compare = float16_compare_quiet(a, b, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_equal);
}

uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    int compare = float16_compare(a, b, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_greater ||
                          compare == float_relation_equal);
}

uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    int compare = float16_compare(a, b, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_greater);
}

uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    float16 f0 = float16_abs(a);
    float16 f1 = float16_abs(b);
    int compare = float16_compare(f0, f1, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_greater ||
                          compare == float_relation_equal);
}

uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
{
    float_status *fpst = fpstp;
    float16 f0 = float16_abs(a);
    float16 f1 = float16_abs(b);
    int compare = float16_compare(f0, f1, fpst);
    return ADVSIMD_CMPRES(compare == float_relation_greater);
}

/* round to integral */
uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
{
    return float16_round_to_int(x, fp_status);
}

uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float16 ret;

    ret = float16_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

/*
 * Half-precision floating point conversion functions
 *
 * There are a multitude of conversion functions with various
 * different rounding modes. This is dealt with by the calling code
 * setting the mode appropriately before calling the helper.
 */

uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
{
    float_status *fpst = fpstp;

    /* Invalid if we are passed a NaN */
    if (float16_is_any_nan(a)) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_int16(a, fpst);
}

uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
{
    float_status *fpst = fpstp;

    /* Invalid if we are passed a NaN */
    if (float16_is_any_nan(a)) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_uint16(a, fpst);
}

static int el_from_spsr(uint32_t spsr)
{
    /* Return the exception level that this SPSR is requesting a return to,
     * or -1 if it is invalid (an illegal return)
     */
    if (spsr & PSTATE_nRW) {
        switch (spsr & CPSR_M) {
        case ARM_CPU_MODE_USR:
            return 0;
        case ARM_CPU_MODE_HYP:
            return 2;
        case ARM_CPU_MODE_FIQ:
        case ARM_CPU_MODE_IRQ:
        case ARM_CPU_MODE_SVC:
        case ARM_CPU_MODE_ABT:
        case ARM_CPU_MODE_UND:
        case ARM_CPU_MODE_SYS:
            return 1;
        case ARM_CPU_MODE_MON:
            /* Returning to Mon from AArch64 is never possible,
             * so this is an illegal return.
             */
        default:
            return -1;
        }
    } else {
        if (extract32(spsr, 1, 1)) {
            /* Return with reserved M[1] bit set */
            return -1;
        }
        if (extract32(spsr, 0, 4) == 1) {
            /* return to EL0 with M[0] bit set */
            return -1;
        }
        return extract32(spsr, 2, 2);
    }
}

static void cpsr_write_from_spsr_elx(CPUARMState *env,
                                     uint32_t val)
{
    uint32_t mask;

    /* Save SPSR_ELx.SS into PSTATE. */
    env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
    val &= ~PSTATE_SS;

    /* Move DIT to the correct location for CPSR */
    if (val & PSTATE_DIT) {
        val &= ~PSTATE_DIT;
        val |= CPSR_DIT;
    }

    mask = aarch32_cpsr_valid_mask(env->features, \
        &env_archcpu(env)->isar);
    cpsr_write(env, val, mask, CPSRWriteRaw);
}

void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
{
    int cur_el = arm_current_el(env);
    unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
    uint32_t spsr = env->banked_spsr[spsr_idx];
    int new_el;
    bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;

    aarch64_save_sp(env, cur_el);

    arm_clear_exclusive(env);

    /* We must squash the PSTATE.SS bit to zero unless both of the
     * following hold:
     *  1. debug exceptions are currently disabled
     *  2. singlestep will be active in the EL we return to
     * We check 1 here and 2 after we've done the pstate/cpsr write() to
     * transition to the EL we're going to.
     */
    if (arm_generate_debug_exceptions(env)) {
        spsr &= ~PSTATE_SS;
    }

    /*
     * FEAT_RME forbids return from EL3 with an invalid security state.
     * We don't need an explicit check for FEAT_RME here because we enforce
     * in scr_write() that you can't set the NSE bit without it.
     */
    if (cur_el == 3 && (env->cp15.scr_el3 & (SCR_NS | SCR_NSE)) == SCR_NSE) {
        goto illegal_return;
    }

    new_el = el_from_spsr(spsr);
    if (new_el == -1) {
        goto illegal_return;
    }
    if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
        /* Disallow return to an EL which is unimplemented or higher
         * than the current one.
         */
        goto illegal_return;
    }

    if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
        /* Return to an EL which is configured for a different register width */
        goto illegal_return;
    }

    if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
        goto illegal_return;
    }

    qemu_mutex_lock_iothread();
    arm_call_pre_el_change_hook(env_archcpu(env));
    qemu_mutex_unlock_iothread();

    if (!return_to_aa64) {
        env->aarch64 = false;
        /* We do a raw CPSR write because aarch64_sync_64_to_32()
         * will sort the register banks out for us, and we've already
         * caught all the bad-mode cases in el_from_spsr().
         */
        cpsr_write_from_spsr_elx(env, spsr);
        if (!arm_singlestep_active(env)) {
            env->pstate &= ~PSTATE_SS;
        }
        aarch64_sync_64_to_32(env);

        if (spsr & CPSR_T) {
            env->regs[15] = new_pc & ~0x1;
        } else {
            env->regs[15] = new_pc & ~0x3;
        }
        helper_rebuild_hflags_a32(env, new_el);
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch32 EL%d PC 0x%" PRIx32 "\n",
                      cur_el, new_el, env->regs[15]);
    } else {
        int tbii;

        env->aarch64 = true;
        spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
        pstate_write(env, spsr);
        if (!arm_singlestep_active(env)) {
            env->pstate &= ~PSTATE_SS;
        }
        aarch64_restore_sp(env, new_el);
        helper_rebuild_hflags_a64(env, new_el);

        /*
         * Apply TBI to the exception return address.  We had to delay this
         * until after we selected the new EL, so that we could select the
         * correct TBI+TBID bits.  This is made easier by waiting until after
         * the hflags rebuild, since we can pull the composite TBII field
         * from there.
         */
        tbii = EX_TBFLAG_A64(env->hflags, TBII);
        if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
            /* TBI is enabled. */
            int core_mmu_idx = cpu_mmu_index(env, false);
            if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
                new_pc = sextract64(new_pc, 0, 56);
            } else {
                new_pc = extract64(new_pc, 0, 56);
            }
        }
        env->pc = new_pc;

        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch64 EL%d PC 0x%" PRIx64 "\n",
                      cur_el, new_el, env->pc);
    }

    /*
     * Note that cur_el can never be 0.  If new_el is 0, then
     * el0_a64 is return_to_aa64, else el0_a64 is ignored.
     */
    aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);

    qemu_mutex_lock_iothread();
    arm_call_el_change_hook(env_archcpu(env));
    qemu_mutex_unlock_iothread();

    return;

illegal_return:
    /* Illegal return events of various kinds have architecturally
     * mandated behaviour:
     * restore NZCV and DAIF from SPSR_ELx
     * set PSTATE.IL
     * restore PC from ELR_ELx
     * no change to exception level, execution state or stack pointer
     */
    env->pstate |= PSTATE_IL;
    env->pc = new_pc;
    spsr &= PSTATE_NZCV | PSTATE_DAIF;
    spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
    pstate_write(env, spsr);
    if (!arm_singlestep_active(env)) {
        env->pstate &= ~PSTATE_SS;
    }
    helper_rebuild_hflags_a64(env, cur_el);
    qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
                  "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
}

/*
 * Square Root and Reciprocal square root
 */

uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
{
    float_status *s = fpstp;

    return float16_sqrt(a, s);
}

void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /*
     * Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */
    int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);
    int mmu_idx = cpu_mmu_index(env, false);
    void *mem;

    /*
     * Trapless lookup.  In addition to actual invalid page, may
     * return NULL for I/O, watchpoints, clean pages, etc.
     */
    mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);

#ifndef CONFIG_USER_ONLY
    if (unlikely(!mem)) {
        uintptr_t ra = GETPC();

        /*
         * Trap if accessing an invalid page.  DC_ZVA requires that we supply
         * the original pointer for an invalid page.  But watchpoints require
         * that we probe the actual space.  So do both.
         */
        (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
        mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);

        if (unlikely(!mem)) {
            /*
             * The only remaining reason for mem == NULL is I/O.
             * Just do a series of byte writes as the architecture demands.
             */
            for (int i = 0; i < blocklen; i++) {
                cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
            }
            return;
        }
    }
#endif

    memset(mem, 0, blocklen);
}

void HELPER(unaligned_access)(CPUARMState *env, uint64_t addr,
                              uint32_t access_type, uint32_t mmu_idx)
{
    arm_cpu_do_unaligned_access(env_cpu(env), addr, access_type,
                                mmu_idx, GETPC());
}

/* Memory operations (memset, memmove, memcpy) */

/*
 * Return true if the CPY* and SET* insns can execute; compare
 * pseudocode CheckMOPSEnabled(), though we refactor it a little.
 */
static bool mops_enabled(CPUARMState *env)
{
    int el = arm_current_el(env);

    if (el < 2 &&
        (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
        !(arm_hcrx_el2_eff(env) & HCRX_MSCEN)) {
        return false;
    }

    if (el == 0) {
        if (!el_is_in_host(env, 0)) {
            return env->cp15.sctlr_el[1] & SCTLR_MSCEN;
        } else {
            return env->cp15.sctlr_el[2] & SCTLR_MSCEN;
        }
    }
    return true;
}

static void check_mops_enabled(CPUARMState *env, uintptr_t ra)
{
    if (!mops_enabled(env)) {
        raise_exception_ra(env, EXCP_UDEF, syn_uncategorized(),
                           exception_target_el(env), ra);
    }
}

/*
 * Return the target exception level for an exception due
 * to mismatched arguments in a FEAT_MOPS copy or set.
 * Compare pseudocode MismatchedCpySetTargetEL()
 */
static int mops_mismatch_exception_target_el(CPUARMState *env)
{
    int el = arm_current_el(env);

    if (el > 1) {
        return el;
    }
    if (el == 0 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
        return 2;
    }
    if (el == 1 && (arm_hcrx_el2_eff(env) & HCRX_MCE2)) {
        return 2;
    }
    return 1;
}

/*
 * Check whether an M or E instruction was executed with a CF value
 * indicating the wrong option for this implementation.
 * Assumes we are always Option A.
 */
static void check_mops_wrong_option(CPUARMState *env, uint32_t syndrome,
                                    uintptr_t ra)
{
    if (env->CF != 0) {
        syndrome |= 1 << 17; /* Set the wrong-option bit */
        raise_exception_ra(env, EXCP_UDEF, syndrome,
                           mops_mismatch_exception_target_el(env), ra);
    }
}

/*
 * Return the maximum number of bytes we can transfer starting at addr
 * without crossing a page boundary.
 */
static uint64_t page_limit(uint64_t addr)
{
    return TARGET_PAGE_ALIGN(addr + 1) - addr;
}

/*
 * Return the number of bytes we can copy starting from addr and working
 * backwards without crossing a page boundary.
 */
static uint64_t page_limit_rev(uint64_t addr)
{
    return (addr & ~TARGET_PAGE_MASK) + 1;
}

/*
 * Perform part of a memory set on an area of guest memory starting at
 * toaddr (a dirty address) and extending for setsize bytes.
 *
 * Returns the number of bytes actually set, which might be less than
 * setsize; the caller should loop until the whole set has been done.
 * The caller should ensure that the guest registers are correct
 * for the possibility that the first byte of the set encounters
 * an exception or watchpoint. We guarantee not to take any faults
 * for bytes other than the first.
 */
static uint64_t set_step(CPUARMState *env, uint64_t toaddr,
                         uint64_t setsize, uint32_t data, int memidx,
                         uint32_t *mtedesc, uintptr_t ra)
{
    void *mem;

    setsize = MIN(setsize, page_limit(toaddr));
    if (*mtedesc) {
        uint64_t mtesize = mte_mops_probe(env, toaddr, setsize, *mtedesc);
        if (mtesize == 0) {
            /* Trap, or not. All CPU state is up to date */
            mte_check_fail(env, *mtedesc, toaddr, ra);
            /* Continue, with no further MTE checks required */
            *mtedesc = 0;
        } else {
            /* Advance to the end, or to the tag mismatch */
            setsize = MIN(setsize, mtesize);
        }
    }

    toaddr = useronly_clean_ptr(toaddr);
    /*
     * Trapless lookup: returns NULL for invalid page, I/O,
     * watchpoints, clean pages, etc.
     */
    mem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, memidx);

#ifndef CONFIG_USER_ONLY
    if (unlikely(!mem)) {
        /*
         * Slow-path: just do one byte write. This will handle the
         * watchpoint, invalid page, etc handling correctly.
         * For clean code pages, the next iteration will see
         * the page dirty and will use the fast path.
         */
        cpu_stb_mmuidx_ra(env, toaddr, data, memidx, ra);
        return 1;
    }
#endif
    /* Easy case: just memset the host memory */
    memset(mem, data, setsize);
    return setsize;
}

/*
 * Similar, but setting tags. The architecture requires us to do this
 * in 16-byte chunks. SETP accesses are not tag checked; they set
 * the tags.
 */
static uint64_t set_step_tags(CPUARMState *env, uint64_t toaddr,
                              uint64_t setsize, uint32_t data, int memidx,
                              uint32_t *mtedesc, uintptr_t ra)
{
    void *mem;
    uint64_t cleanaddr;

    setsize = MIN(setsize, page_limit(toaddr));

    cleanaddr = useronly_clean_ptr(toaddr);
    /*
     * Trapless lookup: returns NULL for invalid page, I/O,
     * watchpoints, clean pages, etc.
     */
    mem = tlb_vaddr_to_host(env, cleanaddr, MMU_DATA_STORE, memidx);

#ifndef CONFIG_USER_ONLY
    if (unlikely(!mem)) {
        /*
         * Slow-path: just do one write. This will handle the
         * watchpoint, invalid page, etc handling correctly.
         * The architecture requires that we do 16 bytes at a time,
         * and we know both ptr and size are 16 byte aligned.
         * For clean code pages, the next iteration will see
         * the page dirty and will use the fast path.
         */
        uint64_t repldata = data * 0x0101010101010101ULL;
        MemOpIdx oi16 = make_memop_idx(MO_TE | MO_128, memidx);
        cpu_st16_mmu(env, toaddr, int128_make128(repldata, repldata), oi16, ra);
        mte_mops_set_tags(env, toaddr, 16, *mtedesc);
        return 16;
    }
#endif
    /* Easy case: just memset the host memory */
    memset(mem, data, setsize);
    mte_mops_set_tags(env, toaddr, setsize, *mtedesc);
    return setsize;
}

typedef uint64_t StepFn(CPUARMState *env, uint64_t toaddr,
                        uint64_t setsize, uint32_t data,
                        int memidx, uint32_t *mtedesc, uintptr_t ra);

/* Extract register numbers from a MOPS exception syndrome value */
static int mops_destreg(uint32_t syndrome)
{
    return extract32(syndrome, 10, 5);
}

static int mops_srcreg(uint32_t syndrome)
{
    return extract32(syndrome, 5, 5);
}

static int mops_sizereg(uint32_t syndrome)
{
    return extract32(syndrome, 0, 5);
}

/*
 * Return true if TCMA and TBI bits mean we need to do MTE checks.
 * We only need to do this once per MOPS insn, not for every page.
 */
static bool mte_checks_needed(uint64_t ptr, uint32_t desc)
{
    int bit55 = extract64(ptr, 55, 1);

    /*
     * Note that tbi_check() returns true for "access checked" but
     * tcma_check() returns true for "access unchecked".
     */
    if (!tbi_check(desc, bit55)) {
        return false;
    }
    return !tcma_check(desc, bit55, allocation_tag_from_addr(ptr));
}

/* Take an exception if the SETG addr/size are not granule aligned */
static void check_setg_alignment(CPUARMState *env, uint64_t ptr, uint64_t size,
                                 uint32_t memidx, uintptr_t ra)
{
    if ((size != 0 && !QEMU_IS_ALIGNED(ptr, TAG_GRANULE)) ||
        !QEMU_IS_ALIGNED(size, TAG_GRANULE)) {
        arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
                                    memidx, ra);

    }
}

/*
 * For the Memory Set operation, our implementation chooses
 * always to use "option A", where we update Xd to the final
 * address in the SETP insn, and set Xn to be -(bytes remaining).
 * On SETM and SETE insns we only need update Xn.
 *
 * @env: CPU
 * @syndrome: syndrome value for mismatch exceptions
 * (also contains the register numbers we need to use)
 * @mtedesc: MTE descriptor word
 * @stepfn: function which does a single part of the set operation
 * @is_setg: true if this is the tag-setting SETG variant
 */
static void do_setp(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
                    StepFn *stepfn, bool is_setg, uintptr_t ra)
{
    /* Prologue: we choose to do up to the next page boundary */
    int rd = mops_destreg(syndrome);
    int rs = mops_srcreg(syndrome);
    int rn = mops_sizereg(syndrome);
    uint8_t data = env->xregs[rs];
    uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
    uint64_t toaddr = env->xregs[rd];
    uint64_t setsize = env->xregs[rn];
    uint64_t stagesetsize, step;

    check_mops_enabled(env, ra);

    if (setsize > INT64_MAX) {
        setsize = INT64_MAX;
        if (is_setg) {
            setsize &= ~0xf;
        }
    }

    if (unlikely(is_setg)) {
        check_setg_alignment(env, toaddr, setsize, memidx, ra);
    } else if (!mte_checks_needed(toaddr, mtedesc)) {
        mtedesc = 0;
    }

    stagesetsize = MIN(setsize, page_limit(toaddr));
    while (stagesetsize) {
        env->xregs[rd] = toaddr;
        env->xregs[rn] = setsize;
        step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
        toaddr += step;
        setsize -= step;
        stagesetsize -= step;
    }
    /* Insn completed, so update registers to the Option A format */
    env->xregs[rd] = toaddr + setsize;
    env->xregs[rn] = -setsize;

    /* Set NZCV = 0000 to indicate we are an Option A implementation */
    env->NF = 0;
    env->ZF = 1; /* our env->ZF encoding is inverted */
    env->CF = 0;
    env->VF = 0;
    return;
}

void HELPER(setp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
{
    do_setp(env, syndrome, mtedesc, set_step, false, GETPC());
}

void HELPER(setgp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
{
    do_setp(env, syndrome, mtedesc, set_step_tags, true, GETPC());
}

static void do_setm(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
                    StepFn *stepfn, bool is_setg, uintptr_t ra)
{
    /* Main: we choose to do all the full-page chunks */
    CPUState *cs = env_cpu(env);
    int rd = mops_destreg(syndrome);
    int rs = mops_srcreg(syndrome);
    int rn = mops_sizereg(syndrome);
    uint8_t data = env->xregs[rs];
    uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
    uint64_t setsize = -env->xregs[rn];
    uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
    uint64_t step, stagesetsize;

    check_mops_enabled(env, ra);

    /*
     * We're allowed to NOP out "no data to copy" before the consistency
     * checks; we choose to do so.
     */
    if (env->xregs[rn] == 0) {
        return;
    }

    check_mops_wrong_option(env, syndrome, ra);

    /*
     * Our implementation will work fine even if we have an unaligned
     * destination address, and because we update Xn every time around
     * the loop below and the return value from stepfn() may be less
     * than requested, we might find toaddr is unaligned. So we don't
     * have an IMPDEF check for alignment here.
     */

    if (unlikely(is_setg)) {
        check_setg_alignment(env, toaddr, setsize, memidx, ra);
    } else if (!mte_checks_needed(toaddr, mtedesc)) {
        mtedesc = 0;
    }

    /* Do the actual memset: we leave the last partial page to SETE */
    stagesetsize = setsize & TARGET_PAGE_MASK;
    while (stagesetsize > 0) {
        step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
        toaddr += step;
        setsize -= step;
        stagesetsize -= step;
        env->xregs[rn] = -setsize;
        if (stagesetsize > 0 && unlikely(cpu_loop_exit_requested(cs))) {
            cpu_loop_exit_restore(cs, ra);
        }
    }
}

void HELPER(setm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
{
    do_setm(env, syndrome, mtedesc, set_step, false, GETPC());
}

void HELPER(setgm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
{
    do_setm(env, syndrome, mtedesc, set_step_tags, true, GETPC());
}

static void do_sete(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
                    StepFn *stepfn, bool is_setg, uintptr_t ra)
{
    /* Epilogue: do the last partial page */
    int rd = mops_destreg(syndrome);
    int rs = mops_srcreg(syndrome);
    int rn = mops_sizereg(syndrome);
    uint8_t data = env->xregs[rs];
    uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
    uint64_t setsize = -env->xregs[rn];
    uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
    uint64_t step;

    check_mops_enabled(env, ra);

    /*
     * We're allowed to NOP out "no data to copy" before the consistency
     * checks; we choose to do so.
     */
    if (setsize == 0) {
        return;
    }

    check_mops_wrong_option(env, syndrome, ra);

    /*
     * Our implementation has no address alignment requirements, but
     * we do want to enforce the "less than a page" size requirement,
     * so we don't need to have the "check for interrupts" here.
     */
    if (setsize >= TARGET_PAGE_SIZE) {
        raise_exception_ra(env, EXCP_UDEF, syndrome,
                           mops_mismatch_exception_target_el(env), ra);
    }

    if (unlikely(is_setg)) {
        check_setg_alignment(env, toaddr, setsize, memidx, ra);
    } else if (!mte_checks_needed(toaddr, mtedesc)) {
        mtedesc = 0;
    }

    /* Do the actual memset */
    while (setsize > 0) {
        step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
        toaddr += step;
        setsize -= step;
        env->xregs[rn] = -setsize;
    }
}

void HELPER(sete)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
{
    do_sete(env, syndrome, mtedesc, set_step, false, GETPC());
}

void HELPER(setge)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
{
    do_sete(env, syndrome, mtedesc, set_step_tags, true, GETPC());
}

/*
 * Perform part of a memory copy from the guest memory at fromaddr
 * and extending for copysize bytes, to the guest memory at
 * toaddr. Both addreses are dirty.
 *
 * Returns the number of bytes actually set, which might be less than
 * copysize; the caller should loop until the whole copy has been done.
 * The caller should ensure that the guest registers are correct
 * for the possibility that the first byte of the copy encounters
 * an exception or watchpoint. We guarantee not to take any faults
 * for bytes other than the first.
 */
static uint64_t copy_step(CPUARMState *env, uint64_t toaddr, uint64_t fromaddr,
                          uint64_t copysize, int wmemidx, int rmemidx,
                          uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
{
    void *rmem;
    void *wmem;

    /* Don't cross a page boundary on either source or destination */
    copysize = MIN(copysize, page_limit(toaddr));
    copysize = MIN(copysize, page_limit(fromaddr));
    /*
     * Handle MTE tag checks: either handle the tag mismatch for byte 0,
     * or else copy up to but not including the byte with the mismatch.
     */
    if (*rdesc) {
        uint64_t mtesize = mte_mops_probe(env, fromaddr, copysize, *rdesc);
        if (mtesize == 0) {
            mte_check_fail(env, *rdesc, fromaddr, ra);
            *rdesc = 0;
        } else {
            copysize = MIN(copysize, mtesize);
        }
    }
    if (*wdesc) {
        uint64_t mtesize = mte_mops_probe(env, toaddr, copysize, *wdesc);
        if (mtesize == 0) {
            mte_check_fail(env, *wdesc, toaddr, ra);
            *wdesc = 0;
        } else {
            copysize = MIN(copysize, mtesize);
        }
    }

    toaddr = useronly_clean_ptr(toaddr);
    fromaddr = useronly_clean_ptr(fromaddr);
    /* Trapless lookup of whether we can get a host memory pointer */
    wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
    rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);

#ifndef CONFIG_USER_ONLY
    /*
     * If we don't have host memory for both source and dest then just
     * do a single byte copy. This will handle watchpoints, invalid pages,
     * etc correctly. For clean code pages, the next iteration will see
     * the page dirty and will use the fast path.
     */
    if (unlikely(!rmem || !wmem)) {
        uint8_t byte;
        if (rmem) {
            byte = *(uint8_t *)rmem;
        } else {
            byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
        }
        if (wmem) {
            *(uint8_t *)wmem = byte;
        } else {
            cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
        }
        return 1;
    }
#endif
    /* Easy case: just memmove the host memory */
    memmove(wmem, rmem, copysize);
    return copysize;
}

/*
 * Do part of a backwards memory copy. Here toaddr and fromaddr point
 * to the *last* byte to be copied.
 */
static uint64_t copy_step_rev(CPUARMState *env, uint64_t toaddr,
                              uint64_t fromaddr,
                              uint64_t copysize, int wmemidx, int rmemidx,
                              uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
{
    void *rmem;
    void *wmem;

    /* Don't cross a page boundary on either source or destination */
    copysize = MIN(copysize, page_limit_rev(toaddr));
    copysize = MIN(copysize, page_limit_rev(fromaddr));

    /*
     * Handle MTE tag checks: either handle the tag mismatch for byte 0,
     * or else copy up to but not including the byte with the mismatch.
     */
    if (*rdesc) {
        uint64_t mtesize = mte_mops_probe_rev(env, fromaddr, copysize, *rdesc);
        if (mtesize == 0) {
            mte_check_fail(env, *rdesc, fromaddr, ra);
            *rdesc = 0;
        } else {
            copysize = MIN(copysize, mtesize);
        }
    }
    if (*wdesc) {
        uint64_t mtesize = mte_mops_probe_rev(env, toaddr, copysize, *wdesc);
        if (mtesize == 0) {
            mte_check_fail(env, *wdesc, toaddr, ra);
            *wdesc = 0;
        } else {
            copysize = MIN(copysize, mtesize);
        }
    }

    toaddr = useronly_clean_ptr(toaddr);
    fromaddr = useronly_clean_ptr(fromaddr);
    /* Trapless lookup of whether we can get a host memory pointer */
    wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
    rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);

#ifndef CONFIG_USER_ONLY
    /*
     * If we don't have host memory for both source and dest then just
     * do a single byte copy. This will handle watchpoints, invalid pages,
     * etc correctly. For clean code pages, the next iteration will see
     * the page dirty and will use the fast path.
     */
    if (unlikely(!rmem || !wmem)) {
        uint8_t byte;
        if (rmem) {
            byte = *(uint8_t *)rmem;
        } else {
            byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
        }
        if (wmem) {
            *(uint8_t *)wmem = byte;
        } else {
            cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
        }
        return 1;
    }
#endif
    /*
     * Easy case: just memmove the host memory. Note that wmem and
     * rmem here point to the *last* byte to copy.
     */
    memmove(wmem - (copysize - 1), rmem - (copysize - 1), copysize);
    return copysize;
}

/*
 * for the Memory Copy operation, our implementation chooses always
 * to use "option A", where we update Xd and Xs to the final addresses
 * in the CPYP insn, and then in CPYM and CPYE only need to update Xn.
 *
 * @env: CPU
 * @syndrome: syndrome value for mismatch exceptions
 * (also contains the register numbers we need to use)
 * @wdesc: MTE descriptor for the writes (destination)
 * @rdesc: MTE descriptor for the reads (source)
 * @move: true if this is CPY (memmove), false for CPYF (memcpy forwards)
 */
static void do_cpyp(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
                    uint32_t rdesc, uint32_t move, uintptr_t ra)
{
    int rd = mops_destreg(syndrome);
    int rs = mops_srcreg(syndrome);
    int rn = mops_sizereg(syndrome);
    uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
    uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
    bool forwards = true;
    uint64_t toaddr = env->xregs[rd];
    uint64_t fromaddr = env->xregs[rs];
    uint64_t copysize = env->xregs[rn];
    uint64_t stagecopysize, step;

    check_mops_enabled(env, ra);


    if (move) {
        /*
         * Copy backwards if necessary. The direction for a non-overlapping
         * copy is IMPDEF; we choose forwards.
         */
        if (copysize > 0x007FFFFFFFFFFFFFULL) {
            copysize = 0x007FFFFFFFFFFFFFULL;
        }
        uint64_t fs = extract64(fromaddr, 0, 56);
        uint64_t ts = extract64(toaddr, 0, 56);
        uint64_t fe = extract64(fromaddr + copysize, 0, 56);

        if (fs < ts && fe > ts) {
            forwards = false;
        }
    } else {
        if (copysize > INT64_MAX) {
            copysize = INT64_MAX;
        }
    }

    if (!mte_checks_needed(fromaddr, rdesc)) {
        rdesc = 0;
    }
    if (!mte_checks_needed(toaddr, wdesc)) {
        wdesc = 0;
    }

    if (forwards) {
        stagecopysize = MIN(copysize, page_limit(toaddr));
        stagecopysize = MIN(stagecopysize, page_limit(fromaddr));
        while (stagecopysize) {
            env->xregs[rd] = toaddr;
            env->xregs[rs] = fromaddr;
            env->xregs[rn] = copysize;
            step = copy_step(env, toaddr, fromaddr, stagecopysize,
                             wmemidx, rmemidx, &wdesc, &rdesc, ra);
            toaddr += step;
            fromaddr += step;
            copysize -= step;
            stagecopysize -= step;
        }
        /* Insn completed, so update registers to the Option A format */
        env->xregs[rd] = toaddr + copysize;
        env->xregs[rs] = fromaddr + copysize;
        env->xregs[rn] = -copysize;
    } else {
        /*
         * In a reverse copy the to and from addrs in Xs and Xd are the start
         * of the range, but it's more convenient for us to work with pointers
         * to the last byte being copied.
         */
        toaddr += copysize - 1;
        fromaddr += copysize - 1;
        stagecopysize = MIN(copysize, page_limit_rev(toaddr));
        stagecopysize = MIN(stagecopysize, page_limit_rev(fromaddr));
        while (stagecopysize) {
            env->xregs[rn] = copysize;
            step = copy_step_rev(env, toaddr, fromaddr, stagecopysize,
                                 wmemidx, rmemidx, &wdesc, &rdesc, ra);
            copysize -= step;
            stagecopysize -= step;
            toaddr -= step;
            fromaddr -= step;
        }
        /*
         * Insn completed, so update registers to the Option A format.
         * For a reverse copy this is no different to the CPYP input format.
         */
        env->xregs[rn] = copysize;
    }

    /* Set NZCV = 0000 to indicate we are an Option A implementation */
    env->NF = 0;
    env->ZF = 1; /* our env->ZF encoding is inverted */
    env->CF = 0;
    env->VF = 0;
    return;
}

void HELPER(cpyp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
                  uint32_t rdesc)
{
    do_cpyp(env, syndrome, wdesc, rdesc, true, GETPC());
}

void HELPER(cpyfp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
                   uint32_t rdesc)
{
    do_cpyp(env, syndrome, wdesc, rdesc, false, GETPC());
}

static void do_cpym(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
                    uint32_t rdesc, uint32_t move, uintptr_t ra)
{
    /* Main: we choose to copy until less than a page remaining */
    CPUState *cs = env_cpu(env);
    int rd = mops_destreg(syndrome);
    int rs = mops_srcreg(syndrome);
    int rn = mops_sizereg(syndrome);
    uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
    uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
    bool forwards = true;
    uint64_t toaddr, fromaddr, copysize, step;

    check_mops_enabled(env, ra);

    /* We choose to NOP out "no data to copy" before consistency checks */
    if (env->xregs[rn] == 0) {
        return;
    }

    check_mops_wrong_option(env, syndrome, ra);

    if (move) {
        forwards = (int64_t)env->xregs[rn] < 0;
    }

    if (forwards) {
        toaddr = env->xregs[rd] + env->xregs[rn];
        fromaddr = env->xregs[rs] + env->xregs[rn];
        copysize = -env->xregs[rn];
    } else {
        copysize = env->xregs[rn];
        /* This toaddr and fromaddr point to the *last* byte to copy */
        toaddr = env->xregs[rd] + copysize - 1;
        fromaddr = env->xregs[rs] + copysize - 1;
    }

    if (!mte_checks_needed(fromaddr, rdesc)) {
        rdesc = 0;
    }
    if (!mte_checks_needed(toaddr, wdesc)) {
        wdesc = 0;
    }

    /* Our implementation has no particular parameter requirements for CPYM */

    /* Do the actual memmove */
    if (forwards) {
        while (copysize >= TARGET_PAGE_SIZE) {
            step = copy_step(env, toaddr, fromaddr, copysize,
                             wmemidx, rmemidx, &wdesc, &rdesc, ra);
            toaddr += step;
            fromaddr += step;
            copysize -= step;
            env->xregs[rn] = -copysize;
            if (copysize >= TARGET_PAGE_SIZE &&
                unlikely(cpu_loop_exit_requested(cs))) {
                cpu_loop_exit_restore(cs, ra);
            }
        }
    } else {
        while (copysize >= TARGET_PAGE_SIZE) {
            step = copy_step_rev(env, toaddr, fromaddr, copysize,
                                 wmemidx, rmemidx, &wdesc, &rdesc, ra);
            toaddr -= step;
            fromaddr -= step;
            copysize -= step;
            env->xregs[rn] = copysize;
            if (copysize >= TARGET_PAGE_SIZE &&
                unlikely(cpu_loop_exit_requested(cs))) {
                cpu_loop_exit_restore(cs, ra);
            }
        }
    }
}

void HELPER(cpym)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
                  uint32_t rdesc)
{
    do_cpym(env, syndrome, wdesc, rdesc, true, GETPC());
}

void HELPER(cpyfm)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
                   uint32_t rdesc)
{
    do_cpym(env, syndrome, wdesc, rdesc, false, GETPC());
}

static void do_cpye(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
                    uint32_t rdesc, uint32_t move, uintptr_t ra)
{
    /* Epilogue: do the last partial page */
    int rd = mops_destreg(syndrome);
    int rs = mops_srcreg(syndrome);
    int rn = mops_sizereg(syndrome);
    uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
    uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
    bool forwards = true;
    uint64_t toaddr, fromaddr, copysize, step;

    check_mops_enabled(env, ra);

    /* We choose to NOP out "no data to copy" before consistency checks */
    if (env->xregs[rn] == 0) {
        return;
    }

    check_mops_wrong_option(env, syndrome, ra);

    if (move) {
        forwards = (int64_t)env->xregs[rn] < 0;
    }

    if (forwards) {
        toaddr = env->xregs[rd] + env->xregs[rn];
        fromaddr = env->xregs[rs] + env->xregs[rn];
        copysize = -env->xregs[rn];
    } else {
        copysize = env->xregs[rn];
        /* This toaddr and fromaddr point to the *last* byte to copy */
        toaddr = env->xregs[rd] + copysize - 1;
        fromaddr = env->xregs[rs] + copysize - 1;
    }

    if (!mte_checks_needed(fromaddr, rdesc)) {
        rdesc = 0;
    }
    if (!mte_checks_needed(toaddr, wdesc)) {
        wdesc = 0;
    }

    /* Check the size; we don't want to have do a check-for-interrupts */
    if (copysize >= TARGET_PAGE_SIZE) {
        raise_exception_ra(env, EXCP_UDEF, syndrome,
                           mops_mismatch_exception_target_el(env), ra);
    }

    /* Do the actual memmove */
    if (forwards) {
        while (copysize > 0) {
            step = copy_step(env, toaddr, fromaddr, copysize,
                             wmemidx, rmemidx, &wdesc, &rdesc, ra);
            toaddr += step;
            fromaddr += step;
            copysize -= step;
            env->xregs[rn] = -copysize;
        }
    } else {
        while (copysize > 0) {
            step = copy_step_rev(env, toaddr, fromaddr, copysize,
                                 wmemidx, rmemidx, &wdesc, &rdesc, ra);
            toaddr -= step;
            fromaddr -= step;
            copysize -= step;
            env->xregs[rn] = copysize;
        }
    }
}

void HELPER(cpye)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
                  uint32_t rdesc)
{
    do_cpye(env, syndrome, wdesc, rdesc, true, GETPC());
}

void HELPER(cpyfe)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
                   uint32_t rdesc)
{
    do_cpye(env, syndrome, wdesc, rdesc, false, GETPC());
}