1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
|
/*
* crypto_helper.c - emulate v8 Crypto Extensions instructions
*
* Copyright (C) 2013 - 2018 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"
#include "crypto/aes.h"
#include "crypto/sm4.h"
#include "vec_internal.h"
union CRYPTO_STATE {
uint8_t bytes[16];
uint32_t words[4];
uint64_t l[2];
};
#if HOST_BIG_ENDIAN
#define CR_ST_BYTE(state, i) ((state).bytes[(15 - (i)) ^ 8])
#define CR_ST_WORD(state, i) ((state).words[(3 - (i)) ^ 2])
#else
#define CR_ST_BYTE(state, i) ((state).bytes[i])
#define CR_ST_WORD(state, i) ((state).words[i])
#endif
/*
* The caller has not been converted to full gvec, and so only
* modifies the low 16 bytes of the vector register.
*/
static void clear_tail_16(void *vd, uint32_t desc)
{
int opr_sz = simd_oprsz(desc);
int max_sz = simd_maxsz(desc);
assert(opr_sz == 16);
clear_tail(vd, opr_sz, max_sz);
}
static void do_crypto_aese(uint64_t *rd, uint64_t *rn, uint64_t *rm,
const uint8_t *sbox, const uint8_t *shift)
{
union CRYPTO_STATE rk = { .l = { rm[0], rm[1] } };
union CRYPTO_STATE st = { .l = { rn[0], rn[1] } };
int i;
/* xor state vector with round key */
rk.l[0] ^= st.l[0];
rk.l[1] ^= st.l[1];
/* combine ShiftRows operation and sbox substitution */
for (i = 0; i < 16; i++) {
CR_ST_BYTE(st, i) = sbox[CR_ST_BYTE(rk, shift[i])];
}
rd[0] = st.l[0];
rd[1] = st.l[1];
}
void HELPER(crypto_aese)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
do_crypto_aese(vd + i, vn + i, vm + i, AES_sbox, AES_shifts);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
void HELPER(crypto_aesd)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
do_crypto_aese(vd + i, vn + i, vm + i, AES_isbox, AES_ishifts);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
static void do_crypto_aesmc(uint64_t *rd, uint64_t *rm, const uint32_t *mc)
{
union CRYPTO_STATE st = { .l = { rm[0], rm[1] } };
int i;
for (i = 0; i < 16; i += 4) {
CR_ST_WORD(st, i >> 2) =
mc[CR_ST_BYTE(st, i)] ^
rol32(mc[CR_ST_BYTE(st, i + 1)], 8) ^
rol32(mc[CR_ST_BYTE(st, i + 2)], 16) ^
rol32(mc[CR_ST_BYTE(st, i + 3)], 24);
}
rd[0] = st.l[0];
rd[1] = st.l[1];
}
void HELPER(crypto_aesmc)(void *vd, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
do_crypto_aesmc(vd + i, vm + i, AES_mc_rot);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
void HELPER(crypto_aesimc)(void *vd, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
do_crypto_aesmc(vd + i, vm + i, AES_imc_rot);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
/*
* SHA-1 logical functions
*/
static uint32_t cho(uint32_t x, uint32_t y, uint32_t z)
{
return (x & (y ^ z)) ^ z;
}
static uint32_t par(uint32_t x, uint32_t y, uint32_t z)
{
return x ^ y ^ z;
}
static uint32_t maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) | ((x | y) & z);
}
void HELPER(crypto_sha1su0)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t d0, d1;
d0 = d[1] ^ d[0] ^ m[0];
d1 = n[0] ^ d[1] ^ m[1];
d[0] = d0;
d[1] = d1;
clear_tail_16(vd, desc);
}
static inline void crypto_sha1_3reg(uint64_t *rd, uint64_t *rn,
uint64_t *rm, uint32_t desc,
uint32_t (*fn)(union CRYPTO_STATE *d))
{
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
int i;
for (i = 0; i < 4; i++) {
uint32_t t = fn(&d);
t += rol32(CR_ST_WORD(d, 0), 5) + CR_ST_WORD(n, 0)
+ CR_ST_WORD(m, i);
CR_ST_WORD(n, 0) = CR_ST_WORD(d, 3);
CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2);
CR_ST_WORD(d, 2) = ror32(CR_ST_WORD(d, 1), 2);
CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0);
CR_ST_WORD(d, 0) = t;
}
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(rd, desc);
}
static uint32_t do_sha1c(union CRYPTO_STATE *d)
{
return cho(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3));
}
void HELPER(crypto_sha1c)(void *vd, void *vn, void *vm, uint32_t desc)
{
crypto_sha1_3reg(vd, vn, vm, desc, do_sha1c);
}
static uint32_t do_sha1p(union CRYPTO_STATE *d)
{
return par(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3));
}
void HELPER(crypto_sha1p)(void *vd, void *vn, void *vm, uint32_t desc)
{
crypto_sha1_3reg(vd, vn, vm, desc, do_sha1p);
}
static uint32_t do_sha1m(union CRYPTO_STATE *d)
{
return maj(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3));
}
void HELPER(crypto_sha1m)(void *vd, void *vn, void *vm, uint32_t desc)
{
crypto_sha1_3reg(vd, vn, vm, desc, do_sha1m);
}
void HELPER(crypto_sha1h)(void *vd, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rm = vm;
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
CR_ST_WORD(m, 0) = ror32(CR_ST_WORD(m, 0), 2);
CR_ST_WORD(m, 1) = CR_ST_WORD(m, 2) = CR_ST_WORD(m, 3) = 0;
rd[0] = m.l[0];
rd[1] = m.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha1su1)(void *vd, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
CR_ST_WORD(d, 0) = rol32(CR_ST_WORD(d, 0) ^ CR_ST_WORD(m, 1), 1);
CR_ST_WORD(d, 1) = rol32(CR_ST_WORD(d, 1) ^ CR_ST_WORD(m, 2), 1);
CR_ST_WORD(d, 2) = rol32(CR_ST_WORD(d, 2) ^ CR_ST_WORD(m, 3), 1);
CR_ST_WORD(d, 3) = rol32(CR_ST_WORD(d, 3) ^ CR_ST_WORD(d, 0), 1);
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
/*
* The SHA-256 logical functions, according to
* http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
*/
static uint32_t S0(uint32_t x)
{
return ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22);
}
static uint32_t S1(uint32_t x)
{
return ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25);
}
static uint32_t s0(uint32_t x)
{
return ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3);
}
static uint32_t s1(uint32_t x)
{
return ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10);
}
void HELPER(crypto_sha256h)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
int i;
for (i = 0; i < 4; i++) {
uint32_t t = cho(CR_ST_WORD(n, 0), CR_ST_WORD(n, 1), CR_ST_WORD(n, 2))
+ CR_ST_WORD(n, 3) + S1(CR_ST_WORD(n, 0))
+ CR_ST_WORD(m, i);
CR_ST_WORD(n, 3) = CR_ST_WORD(n, 2);
CR_ST_WORD(n, 2) = CR_ST_WORD(n, 1);
CR_ST_WORD(n, 1) = CR_ST_WORD(n, 0);
CR_ST_WORD(n, 0) = CR_ST_WORD(d, 3) + t;
t += maj(CR_ST_WORD(d, 0), CR_ST_WORD(d, 1), CR_ST_WORD(d, 2))
+ S0(CR_ST_WORD(d, 0));
CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2);
CR_ST_WORD(d, 2) = CR_ST_WORD(d, 1);
CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0);
CR_ST_WORD(d, 0) = t;
}
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha256h2)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
int i;
for (i = 0; i < 4; i++) {
uint32_t t = cho(CR_ST_WORD(d, 0), CR_ST_WORD(d, 1), CR_ST_WORD(d, 2))
+ CR_ST_WORD(d, 3) + S1(CR_ST_WORD(d, 0))
+ CR_ST_WORD(m, i);
CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2);
CR_ST_WORD(d, 2) = CR_ST_WORD(d, 1);
CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0);
CR_ST_WORD(d, 0) = CR_ST_WORD(n, 3 - i) + t;
}
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha256su0)(void *vd, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
CR_ST_WORD(d, 0) += s0(CR_ST_WORD(d, 1));
CR_ST_WORD(d, 1) += s0(CR_ST_WORD(d, 2));
CR_ST_WORD(d, 2) += s0(CR_ST_WORD(d, 3));
CR_ST_WORD(d, 3) += s0(CR_ST_WORD(m, 0));
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha256su1)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
CR_ST_WORD(d, 0) += s1(CR_ST_WORD(m, 2)) + CR_ST_WORD(n, 1);
CR_ST_WORD(d, 1) += s1(CR_ST_WORD(m, 3)) + CR_ST_WORD(n, 2);
CR_ST_WORD(d, 2) += s1(CR_ST_WORD(d, 0)) + CR_ST_WORD(n, 3);
CR_ST_WORD(d, 3) += s1(CR_ST_WORD(d, 1)) + CR_ST_WORD(m, 0);
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
/*
* The SHA-512 logical functions (same as above but using 64-bit operands)
*/
static uint64_t cho512(uint64_t x, uint64_t y, uint64_t z)
{
return (x & (y ^ z)) ^ z;
}
static uint64_t maj512(uint64_t x, uint64_t y, uint64_t z)
{
return (x & y) | ((x | y) & z);
}
static uint64_t S0_512(uint64_t x)
{
return ror64(x, 28) ^ ror64(x, 34) ^ ror64(x, 39);
}
static uint64_t S1_512(uint64_t x)
{
return ror64(x, 14) ^ ror64(x, 18) ^ ror64(x, 41);
}
static uint64_t s0_512(uint64_t x)
{
return ror64(x, 1) ^ ror64(x, 8) ^ (x >> 7);
}
static uint64_t s1_512(uint64_t x)
{
return ror64(x, 19) ^ ror64(x, 61) ^ (x >> 6);
}
void HELPER(crypto_sha512h)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
uint64_t d0 = rd[0];
uint64_t d1 = rd[1];
d1 += S1_512(rm[1]) + cho512(rm[1], rn[0], rn[1]);
d0 += S1_512(d1 + rm[0]) + cho512(d1 + rm[0], rm[1], rn[0]);
rd[0] = d0;
rd[1] = d1;
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha512h2)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
uint64_t d0 = rd[0];
uint64_t d1 = rd[1];
d1 += S0_512(rm[0]) + maj512(rn[0], rm[1], rm[0]);
d0 += S0_512(d1) + maj512(d1, rm[0], rm[1]);
rd[0] = d0;
rd[1] = d1;
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha512su0)(void *vd, void *vn, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t d0 = rd[0];
uint64_t d1 = rd[1];
d0 += s0_512(rd[1]);
d1 += s0_512(rn[0]);
rd[0] = d0;
rd[1] = d1;
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha512su1)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
rd[0] += s1_512(rn[0]) + rm[0];
rd[1] += s1_512(rn[1]) + rm[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sm3partw1)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
uint32_t t;
t = CR_ST_WORD(d, 0) ^ CR_ST_WORD(n, 0) ^ ror32(CR_ST_WORD(m, 1), 17);
CR_ST_WORD(d, 0) = t ^ ror32(t, 17) ^ ror32(t, 9);
t = CR_ST_WORD(d, 1) ^ CR_ST_WORD(n, 1) ^ ror32(CR_ST_WORD(m, 2), 17);
CR_ST_WORD(d, 1) = t ^ ror32(t, 17) ^ ror32(t, 9);
t = CR_ST_WORD(d, 2) ^ CR_ST_WORD(n, 2) ^ ror32(CR_ST_WORD(m, 3), 17);
CR_ST_WORD(d, 2) = t ^ ror32(t, 17) ^ ror32(t, 9);
t = CR_ST_WORD(d, 3) ^ CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(d, 0), 17);
CR_ST_WORD(d, 3) = t ^ ror32(t, 17) ^ ror32(t, 9);
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sm3partw2)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
uint32_t t = CR_ST_WORD(n, 0) ^ ror32(CR_ST_WORD(m, 0), 25);
CR_ST_WORD(d, 0) ^= t;
CR_ST_WORD(d, 1) ^= CR_ST_WORD(n, 1) ^ ror32(CR_ST_WORD(m, 1), 25);
CR_ST_WORD(d, 2) ^= CR_ST_WORD(n, 2) ^ ror32(CR_ST_WORD(m, 2), 25);
CR_ST_WORD(d, 3) ^= CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(m, 3), 25) ^
ror32(t, 17) ^ ror32(t, 2) ^ ror32(t, 26);
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
static inline void QEMU_ALWAYS_INLINE
crypto_sm3tt(uint64_t *rd, uint64_t *rn, uint64_t *rm,
uint32_t desc, uint32_t opcode)
{
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
uint32_t imm2 = simd_data(desc);
uint32_t t;
assert(imm2 < 4);
if (opcode == 0 || opcode == 2) {
/* SM3TT1A, SM3TT2A */
t = par(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1));
} else if (opcode == 1) {
/* SM3TT1B */
t = maj(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1));
} else if (opcode == 3) {
/* SM3TT2B */
t = cho(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1));
} else {
qemu_build_not_reached();
}
t += CR_ST_WORD(d, 0) + CR_ST_WORD(m, imm2);
CR_ST_WORD(d, 0) = CR_ST_WORD(d, 1);
if (opcode < 2) {
/* SM3TT1A, SM3TT1B */
t += CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(d, 3), 20);
CR_ST_WORD(d, 1) = ror32(CR_ST_WORD(d, 2), 23);
} else {
/* SM3TT2A, SM3TT2B */
t += CR_ST_WORD(n, 3);
t ^= rol32(t, 9) ^ rol32(t, 17);
CR_ST_WORD(d, 1) = ror32(CR_ST_WORD(d, 2), 13);
}
CR_ST_WORD(d, 2) = CR_ST_WORD(d, 3);
CR_ST_WORD(d, 3) = t;
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(rd, desc);
}
#define DO_SM3TT(NAME, OPCODE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ crypto_sm3tt(vd, vn, vm, desc, OPCODE); }
DO_SM3TT(crypto_sm3tt1a, 0)
DO_SM3TT(crypto_sm3tt1b, 1)
DO_SM3TT(crypto_sm3tt2a, 2)
DO_SM3TT(crypto_sm3tt2b, 3)
#undef DO_SM3TT
static void do_crypto_sm4e(uint64_t *rd, uint64_t *rn, uint64_t *rm)
{
union CRYPTO_STATE d = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE n = { .l = { rm[0], rm[1] } };
uint32_t t, i;
for (i = 0; i < 4; i++) {
t = CR_ST_WORD(d, (i + 1) % 4) ^
CR_ST_WORD(d, (i + 2) % 4) ^
CR_ST_WORD(d, (i + 3) % 4) ^
CR_ST_WORD(n, i);
t = sm4_sbox[t & 0xff] |
sm4_sbox[(t >> 8) & 0xff] << 8 |
sm4_sbox[(t >> 16) & 0xff] << 16 |
sm4_sbox[(t >> 24) & 0xff] << 24;
CR_ST_WORD(d, i) ^= t ^ rol32(t, 2) ^ rol32(t, 10) ^ rol32(t, 18) ^
rol32(t, 24);
}
rd[0] = d.l[0];
rd[1] = d.l[1];
}
void HELPER(crypto_sm4e)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
do_crypto_sm4e(vd + i, vn + i, vm + i);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
static void do_crypto_sm4ekey(uint64_t *rd, uint64_t *rn, uint64_t *rm)
{
union CRYPTO_STATE d;
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
uint32_t t, i;
d = n;
for (i = 0; i < 4; i++) {
t = CR_ST_WORD(d, (i + 1) % 4) ^
CR_ST_WORD(d, (i + 2) % 4) ^
CR_ST_WORD(d, (i + 3) % 4) ^
CR_ST_WORD(m, i);
t = sm4_sbox[t & 0xff] |
sm4_sbox[(t >> 8) & 0xff] << 8 |
sm4_sbox[(t >> 16) & 0xff] << 16 |
sm4_sbox[(t >> 24) & 0xff] << 24;
CR_ST_WORD(d, i) ^= t ^ rol32(t, 13) ^ rol32(t, 23);
}
rd[0] = d.l[0];
rd[1] = d.l[1];
}
void HELPER(crypto_sm4ekey)(void *vd, void *vn, void* vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
do_crypto_sm4ekey(vd + i, vn + i, vm + i);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
void HELPER(crypto_rax1)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] = n[i] ^ rol64(m[i], 1);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
|