aboutsummaryrefslogtreecommitdiff
path: root/target/arm/sve_helper.c
blob: f43640c1eb3ceb3007028f789503436682d821a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
/*
 * ARM SVE Operations
 *
 * Copyright (c) 2018 Linaro, Ltd.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"


/* Note that vector data is stored in host-endian 64-bit chunks,
   so addressing units smaller than that needs a host-endian fixup.  */
#ifdef HOST_WORDS_BIGENDIAN
#define H1(x)   ((x) ^ 7)
#define H1_2(x) ((x) ^ 6)
#define H1_4(x) ((x) ^ 4)
#define H2(x)   ((x) ^ 3)
#define H4(x)   ((x) ^ 1)
#else
#define H1(x)   (x)
#define H1_2(x) (x)
#define H1_4(x) (x)
#define H2(x)   (x)
#define H4(x)   (x)
#endif

/* Return a value for NZCV as per the ARM PredTest pseudofunction.
 *
 * The return value has bit 31 set if N is set, bit 1 set if Z is clear,
 * and bit 0 set if C is set.  Compare the definitions of these variables
 * within CPUARMState.
 */

/* For no G bits set, NZCV = C.  */
#define PREDTEST_INIT  1

/* This is an iterative function, called for each Pd and Pg word
 * moving forward.
 */
static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
{
    if (likely(g)) {
        /* Compute N from first D & G.
           Use bit 2 to signal first G bit seen.  */
        if (!(flags & 4)) {
            flags |= ((d & (g & -g)) != 0) << 31;
            flags |= 4;
        }

        /* Accumulate Z from each D & G.  */
        flags |= ((d & g) != 0) << 1;

        /* Compute C from last !(D & G).  Replace previous.  */
        flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
    }
    return flags;
}

/* The same for a single word predicate.  */
uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
{
    return iter_predtest_fwd(d, g, PREDTEST_INIT);
}

/* The same for a multi-word predicate.  */
uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
{
    uint32_t flags = PREDTEST_INIT;
    uint64_t *d = vd, *g = vg;
    uintptr_t i = 0;

    do {
        flags = iter_predtest_fwd(d[i], g[i], flags);
    } while (++i < words);

    return flags;
}

/* Expand active predicate bits to bytes, for byte elements.
 *  for (i = 0; i < 256; ++i) {
 *      unsigned long m = 0;
 *      for (j = 0; j < 8; j++) {
 *          if ((i >> j) & 1) {
 *              m |= 0xfful << (j << 3);
 *          }
 *      }
 *      printf("0x%016lx,\n", m);
 *  }
 */
static inline uint64_t expand_pred_b(uint8_t byte)
{
    static const uint64_t word[256] = {
        0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00,
        0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff,
        0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000,
        0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff,
        0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00,
        0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff,
        0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000,
        0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff,
        0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00,
        0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff,
        0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000,
        0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff,
        0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00,
        0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff,
        0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000,
        0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff,
        0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00,
        0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff,
        0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000,
        0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff,
        0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00,
        0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff,
        0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000,
        0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff,
        0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00,
        0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff,
        0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000,
        0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff,
        0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00,
        0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff,
        0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000,
        0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff,
        0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00,
        0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff,
        0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000,
        0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff,
        0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00,
        0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff,
        0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000,
        0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff,
        0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00,
        0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff,
        0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000,
        0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff,
        0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00,
        0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff,
        0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000,
        0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff,
        0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00,
        0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff,
        0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000,
        0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff,
        0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00,
        0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff,
        0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000,
        0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff,
        0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00,
        0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff,
        0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000,
        0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff,
        0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00,
        0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff,
        0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000,
        0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff,
        0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00,
        0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff,
        0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000,
        0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff,
        0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00,
        0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff,
        0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000,
        0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff,
        0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00,
        0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff,
        0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000,
        0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff,
        0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00,
        0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff,
        0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000,
        0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff,
        0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00,
        0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff,
        0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000,
        0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff,
        0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00,
        0xffffffffffffffff,
    };
    return word[byte];
}

/* Similarly for half-word elements.
 *  for (i = 0; i < 256; ++i) {
 *      unsigned long m = 0;
 *      if (i & 0xaa) {
 *          continue;
 *      }
 *      for (j = 0; j < 8; j += 2) {
 *          if ((i >> j) & 1) {
 *              m |= 0xfffful << (j << 3);
 *          }
 *      }
 *      printf("[0x%x] = 0x%016lx,\n", i, m);
 *  }
 */
static inline uint64_t expand_pred_h(uint8_t byte)
{
    static const uint64_t word[] = {
        [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000,
        [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000,
        [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000,
        [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000,
        [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000,
        [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000,
        [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000,
        [0x55] = 0xffffffffffffffff,
    };
    return word[byte & 0x55];
}

/* Similarly for single word elements.  */
static inline uint64_t expand_pred_s(uint8_t byte)
{
    static const uint64_t word[] = {
        [0x01] = 0x00000000ffffffffull,
        [0x10] = 0xffffffff00000000ull,
        [0x11] = 0xffffffffffffffffull,
    };
    return word[byte & 0x11];
}

#define LOGICAL_PPPP(NAME, FUNC) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)  \
{                                                                         \
    uintptr_t opr_sz = simd_oprsz(desc);                                  \
    uint64_t *d = vd, *n = vn, *m = vm, *g = vg;                          \
    uintptr_t i;                                                          \
    for (i = 0; i < opr_sz / 8; ++i) {                                    \
        d[i] = FUNC(n[i], m[i], g[i]);                                    \
    }                                                                     \
}

#define DO_AND(N, M, G)  (((N) & (M)) & (G))
#define DO_BIC(N, M, G)  (((N) & ~(M)) & (G))
#define DO_EOR(N, M, G)  (((N) ^ (M)) & (G))
#define DO_ORR(N, M, G)  (((N) | (M)) & (G))
#define DO_ORN(N, M, G)  (((N) | ~(M)) & (G))
#define DO_NOR(N, M, G)  (~((N) | (M)) & (G))
#define DO_NAND(N, M, G) (~((N) & (M)) & (G))
#define DO_SEL(N, M, G)  (((N) & (G)) | ((M) & ~(G)))

LOGICAL_PPPP(sve_and_pppp, DO_AND)
LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
LOGICAL_PPPP(sve_nand_pppp, DO_NAND)

#undef DO_AND
#undef DO_BIC
#undef DO_EOR
#undef DO_ORR
#undef DO_ORN
#undef DO_NOR
#undef DO_NAND
#undef DO_SEL
#undef LOGICAL_PPPP

/* Fully general three-operand expander, controlled by a predicate.
 * This is complicated by the host-endian storage of the register file.
 */
/* ??? I don't expect the compiler could ever vectorize this itself.
 * With some tables we can convert bit masks to byte masks, and with
 * extra care wrt byte/word ordering we could use gcc generic vectors
 * and do 16 bytes at a time.
 */
#define DO_ZPZZ(NAME, TYPE, H, OP)                                       \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{                                                                       \
    intptr_t i, opr_sz = simd_oprsz(desc);                              \
    for (i = 0; i < opr_sz; ) {                                         \
        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));                 \
        do {                                                            \
            if (pg & 1) {                                               \
                TYPE nn = *(TYPE *)(vn + H(i));                         \
                TYPE mm = *(TYPE *)(vm + H(i));                         \
                *(TYPE *)(vd + H(i)) = OP(nn, mm);                      \
            }                                                           \
            i += sizeof(TYPE), pg >>= sizeof(TYPE);                     \
        } while (i & 15);                                               \
    }                                                                   \
}

/* Similarly, specialized for 64-bit operands.  */
#define DO_ZPZZ_D(NAME, TYPE, OP)                                \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{                                                               \
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;                  \
    TYPE *d = vd, *n = vn, *m = vm;                             \
    uint8_t *pg = vg;                                           \
    for (i = 0; i < opr_sz; i += 1) {                           \
        if (pg[H1(i)] & 1) {                                    \
            TYPE nn = n[i], mm = m[i];                          \
            d[i] = OP(nn, mm);                                  \
        }                                                       \
    }                                                           \
}

#define DO_AND(N, M)  (N & M)
#define DO_EOR(N, M)  (N ^ M)
#define DO_ORR(N, M)  (N | M)
#define DO_BIC(N, M)  (N & ~M)
#define DO_ADD(N, M)  (N + M)
#define DO_SUB(N, M)  (N - M)
#define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
#define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
#define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
#define DO_MUL(N, M)  (N * M)
#define DO_DIV(N, M)  (M ? N / M : 0)

DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND)
DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND)
DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND)
DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND)

DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR)
DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR)
DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR)
DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR)

DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR)
DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR)
DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR)
DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR)

DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC)
DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC)
DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC)
DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC)

DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD)
DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD)
DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD)
DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD)

DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB)
DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB)
DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB)
DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB)

DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX)
DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX)
DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX)
DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX)

DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX)
DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX)
DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX)
DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX)

DO_ZPZZ(sve_smin_zpzz_b, int8_t,  H1, DO_MIN)
DO_ZPZZ(sve_smin_zpzz_h, int16_t,  H1_2, DO_MIN)
DO_ZPZZ(sve_smin_zpzz_s, int32_t,  H1_4, DO_MIN)
DO_ZPZZ_D(sve_smin_zpzz_d, int64_t,  DO_MIN)

DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN)
DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN)
DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN)
DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN)

DO_ZPZZ(sve_sabd_zpzz_b, int8_t,  H1, DO_ABD)
DO_ZPZZ(sve_sabd_zpzz_h, int16_t,  H1_2, DO_ABD)
DO_ZPZZ(sve_sabd_zpzz_s, int32_t,  H1_4, DO_ABD)
DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t,  DO_ABD)

DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD)
DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD)
DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD)
DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD)

/* Because the computation type is at least twice as large as required,
   these work for both signed and unsigned source types.  */
static inline uint8_t do_mulh_b(int32_t n, int32_t m)
{
    return (n * m) >> 8;
}

static inline uint16_t do_mulh_h(int32_t n, int32_t m)
{
    return (n * m) >> 16;
}

static inline uint32_t do_mulh_s(int64_t n, int64_t m)
{
    return (n * m) >> 32;
}

static inline uint64_t do_smulh_d(uint64_t n, uint64_t m)
{
    uint64_t lo, hi;
    muls64(&lo, &hi, n, m);
    return hi;
}

static inline uint64_t do_umulh_d(uint64_t n, uint64_t m)
{
    uint64_t lo, hi;
    mulu64(&lo, &hi, n, m);
    return hi;
}

DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL)
DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL)
DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL)
DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL)

DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b)
DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h)
DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s)
DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d)

DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b)
DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h)
DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s)
DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d)

DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_DIV)
DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_DIV)

DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_DIV)
DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_DIV)

/* Note that all bits of the shift are significant
   and not modulo the element size.  */
#define DO_ASR(N, M)  (N >> MIN(M, sizeof(N) * 8 - 1))
#define DO_LSR(N, M)  (M < sizeof(N) * 8 ? N >> M : 0)
#define DO_LSL(N, M)  (M < sizeof(N) * 8 ? N << M : 0)

DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR)
DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR)
DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL)

DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR)
DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR)
DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL)

DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR)
DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR)
DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL)

DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR)
DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR)
DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL)

#undef DO_ZPZZ
#undef DO_ZPZZ_D

/* Three-operand expander, controlled by a predicate, in which the
 * third operand is "wide".  That is, for D = N op M, the same 64-bit
 * value of M is used with all of the narrower values of N.
 */
#define DO_ZPZW(NAME, TYPE, TYPEW, H, OP)                               \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{                                                                       \
    intptr_t i, opr_sz = simd_oprsz(desc);                              \
    for (i = 0; i < opr_sz; ) {                                         \
        uint8_t pg = *(uint8_t *)(vg + H1(i >> 3));                     \
        TYPEW mm = *(TYPEW *)(vm + i);                                  \
        do {                                                            \
            if (pg & 1) {                                               \
                TYPE nn = *(TYPE *)(vn + H(i));                         \
                *(TYPE *)(vd + H(i)) = OP(nn, mm);                      \
            }                                                           \
            i += sizeof(TYPE), pg >>= sizeof(TYPE);                     \
        } while (i & 7);                                                \
    }                                                                   \
}

DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR)
DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR)
DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL)

DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR)
DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL)

DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR)
DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL)

#undef DO_ZPZW

/* Fully general two-operand expander, controlled by a predicate.
 */
#define DO_ZPZ(NAME, TYPE, H, OP)                               \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc)  \
{                                                               \
    intptr_t i, opr_sz = simd_oprsz(desc);                      \
    for (i = 0; i < opr_sz; ) {                                 \
        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));         \
        do {                                                    \
            if (pg & 1) {                                       \
                TYPE nn = *(TYPE *)(vn + H(i));                 \
                *(TYPE *)(vd + H(i)) = OP(nn);                  \
            }                                                   \
            i += sizeof(TYPE), pg >>= sizeof(TYPE);             \
        } while (i & 15);                                       \
    }                                                           \
}

/* Similarly, specialized for 64-bit operands.  */
#define DO_ZPZ_D(NAME, TYPE, OP)                                \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc)  \
{                                                               \
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;                  \
    TYPE *d = vd, *n = vn;                                      \
    uint8_t *pg = vg;                                           \
    for (i = 0; i < opr_sz; i += 1) {                           \
        if (pg[H1(i)] & 1) {                                    \
            TYPE nn = n[i];                                     \
            d[i] = OP(nn);                                      \
        }                                                       \
    }                                                           \
}

#define DO_CLS_B(N)   (clrsb32(N) - 24)
#define DO_CLS_H(N)   (clrsb32(N) - 16)

DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B)
DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H)
DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32)
DO_ZPZ_D(sve_cls_d, int64_t, clrsb64)

#define DO_CLZ_B(N)   (clz32(N) - 24)
#define DO_CLZ_H(N)   (clz32(N) - 16)

DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B)
DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H)
DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32)
DO_ZPZ_D(sve_clz_d, uint64_t, clz64)

DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8)
DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16)
DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32)
DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64)

#define DO_CNOT(N)    (N == 0)

DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT)
DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT)
DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT)
DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT)

#define DO_FABS(N)    (N & ((__typeof(N))-1 >> 1))

DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS)
DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS)
DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS)

#define DO_FNEG(N)    (N ^ ~((__typeof(N))-1 >> 1))

DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG)
DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG)
DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG)

#define DO_NOT(N)    (~N)

DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT)
DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT)
DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT)
DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT)

#define DO_SXTB(N)    ((int8_t)N)
#define DO_SXTH(N)    ((int16_t)N)
#define DO_SXTS(N)    ((int32_t)N)
#define DO_UXTB(N)    ((uint8_t)N)
#define DO_UXTH(N)    ((uint16_t)N)
#define DO_UXTS(N)    ((uint32_t)N)

DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB)
DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB)
DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH)
DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB)
DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH)
DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS)

DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB)
DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB)
DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH)
DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB)
DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH)
DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS)

#define DO_ABS(N)    (N < 0 ? -N : N)

DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS)
DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS)
DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS)
DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS)

#define DO_NEG(N)    (-N)

DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG)
DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG)
DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG)
DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG)

/* Three-operand expander, unpredicated, in which the third operand is "wide".
 */
#define DO_ZZW(NAME, TYPE, TYPEW, H, OP)                       \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{                                                              \
    intptr_t i, opr_sz = simd_oprsz(desc);                     \
    for (i = 0; i < opr_sz; ) {                                \
        TYPEW mm = *(TYPEW *)(vm + i);                         \
        do {                                                   \
            TYPE nn = *(TYPE *)(vn + H(i));                    \
            *(TYPE *)(vd + H(i)) = OP(nn, mm);                 \
            i += sizeof(TYPE);                                 \
        } while (i & 7);                                       \
    }                                                          \
}

DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR)
DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR)
DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL)

DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR)
DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL)

DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR)
DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL)

#undef DO_ZZW

#undef DO_CLS_B
#undef DO_CLS_H
#undef DO_CLZ_B
#undef DO_CLZ_H
#undef DO_CNOT
#undef DO_FABS
#undef DO_FNEG
#undef DO_ABS
#undef DO_NEG
#undef DO_ZPZ
#undef DO_ZPZ_D

/* Two-operand reduction expander, controlled by a predicate.
 * The difference between TYPERED and TYPERET has to do with
 * sign-extension.  E.g. for SMAX, TYPERED must be signed,
 * but TYPERET must be unsigned so that e.g. a 32-bit value
 * is not sign-extended to the ABI uint64_t return type.
 */
/* ??? If we were to vectorize this by hand the reduction ordering
 * would change.  For integer operands, this is perfectly fine.
 */
#define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \
uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc)   \
{                                                          \
    intptr_t i, opr_sz = simd_oprsz(desc);                 \
    TYPERED ret = INIT;                                    \
    for (i = 0; i < opr_sz; ) {                            \
        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));    \
        do {                                               \
            if (pg & 1) {                                  \
                TYPEELT nn = *(TYPEELT *)(vn + H(i));      \
                ret = OP(ret, nn);                         \
            }                                              \
            i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT);  \
        } while (i & 15);                                  \
    }                                                      \
    return (TYPERET)ret;                                   \
}

#define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP)             \
uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc)   \
{                                                          \
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;             \
    TYPEE *n = vn;                                         \
    uint8_t *pg = vg;                                      \
    TYPER ret = INIT;                                      \
    for (i = 0; i < opr_sz; i += 1) {                      \
        if (pg[H1(i)] & 1) {                               \
            TYPEE nn = n[i];                               \
            ret = OP(ret, nn);                             \
        }                                                  \
    }                                                      \
    return ret;                                            \
}

DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR)
DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR)
DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR)
DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR)

DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR)
DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR)
DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR)
DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR)

DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND)
DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND)
DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND)
DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND)

DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)

DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD)

DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX)
DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX)
DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX)
DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX)

DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX)
DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX)
DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX)
DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX)

DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN)
DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN)
DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN)
DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN)

DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN)
DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN)
DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN)
DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN)

#undef DO_VPZ
#undef DO_VPZ_D

#undef DO_AND
#undef DO_ORR
#undef DO_EOR
#undef DO_BIC
#undef DO_ADD
#undef DO_SUB
#undef DO_MAX
#undef DO_MIN
#undef DO_ABD
#undef DO_MUL
#undef DO_DIV
#undef DO_ASR
#undef DO_LSR
#undef DO_LSL

/* Similar to the ARM LastActiveElement pseudocode function, except the
   result is multiplied by the element size.  This includes the not found
   indication; e.g. not found for esz=3 is -8.  */
static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
{
    uint64_t mask = pred_esz_masks[esz];
    intptr_t i = words;

    do {
        uint64_t this_g = g[--i] & mask;
        if (this_g) {
            return i * 64 + (63 - clz64(this_g));
        }
    } while (i > 0);
    return (intptr_t)-1 << esz;
}

uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t words)
{
    uint32_t flags = PREDTEST_INIT;
    uint64_t *d = vd, *g = vg;
    intptr_t i = 0;

    do {
        uint64_t this_d = d[i];
        uint64_t this_g = g[i];

        if (this_g) {
            if (!(flags & 4)) {
                /* Set in D the first bit of G.  */
                this_d |= this_g & -this_g;
                d[i] = this_d;
            }
            flags = iter_predtest_fwd(this_d, this_g, flags);
        }
    } while (++i < words);

    return flags;
}

uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
{
    intptr_t words = extract32(pred_desc, 0, SIMD_OPRSZ_BITS);
    intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
    uint32_t flags = PREDTEST_INIT;
    uint64_t *d = vd, *g = vg, esz_mask;
    intptr_t i, next;

    next = last_active_element(vd, words, esz) + (1 << esz);
    esz_mask = pred_esz_masks[esz];

    /* Similar to the pseudocode for pnext, but scaled by ESZ
       so that we find the correct bit.  */
    if (next < words * 64) {
        uint64_t mask = -1;

        if (next & 63) {
            mask = ~((1ull << (next & 63)) - 1);
            next &= -64;
        }
        do {
            uint64_t this_g = g[next / 64] & esz_mask & mask;
            if (this_g != 0) {
                next = (next & -64) + ctz64(this_g);
                break;
            }
            next += 64;
            mask = -1;
        } while (next < words * 64);
    }

    i = 0;
    do {
        uint64_t this_d = 0;
        if (i == next / 64) {
            this_d = 1ull << (next & 63);
        }
        d[i] = this_d;
        flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
    } while (++i < words);

    return flags;
}

/* Store zero into every active element of Zd.  We will use this for two
 * and three-operand predicated instructions for which logic dictates a
 * zero result.  In particular, logical shift by element size, which is
 * otherwise undefined on the host.
 *
 * For element sizes smaller than uint64_t, we use tables to expand
 * the N bits of the controlling predicate to a byte mask, and clear
 * those bytes.
 */
void HELPER(sve_clr_b)(void *vd, void *vg, uint32_t desc)
{
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
    uint64_t *d = vd;
    uint8_t *pg = vg;
    for (i = 0; i < opr_sz; i += 1) {
        d[i] &= ~expand_pred_b(pg[H1(i)]);
    }
}

void HELPER(sve_clr_h)(void *vd, void *vg, uint32_t desc)
{
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
    uint64_t *d = vd;
    uint8_t *pg = vg;
    for (i = 0; i < opr_sz; i += 1) {
        d[i] &= ~expand_pred_h(pg[H1(i)]);
    }
}

void HELPER(sve_clr_s)(void *vd, void *vg, uint32_t desc)
{
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
    uint64_t *d = vd;
    uint8_t *pg = vg;
    for (i = 0; i < opr_sz; i += 1) {
        d[i] &= ~expand_pred_s(pg[H1(i)]);
    }
}

void HELPER(sve_clr_d)(void *vd, void *vg, uint32_t desc)
{
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
    uint64_t *d = vd;
    uint8_t *pg = vg;
    for (i = 0; i < opr_sz; i += 1) {
        if (pg[H1(i)] & 1) {
            d[i] = 0;
        }
    }
}

/* Three-operand expander, immediate operand, controlled by a predicate.
 */
#define DO_ZPZI(NAME, TYPE, H, OP)                              \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc)  \
{                                                               \
    intptr_t i, opr_sz = simd_oprsz(desc);                      \
    TYPE imm = simd_data(desc);                                 \
    for (i = 0; i < opr_sz; ) {                                 \
        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));         \
        do {                                                    \
            if (pg & 1) {                                       \
                TYPE nn = *(TYPE *)(vn + H(i));                 \
                *(TYPE *)(vd + H(i)) = OP(nn, imm);             \
            }                                                   \
            i += sizeof(TYPE), pg >>= sizeof(TYPE);             \
        } while (i & 15);                                       \
    }                                                           \
}

/* Similarly, specialized for 64-bit operands.  */
#define DO_ZPZI_D(NAME, TYPE, OP)                               \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc)  \
{                                                               \
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;                  \
    TYPE *d = vd, *n = vn;                                      \
    TYPE imm = simd_data(desc);                                 \
    uint8_t *pg = vg;                                           \
    for (i = 0; i < opr_sz; i += 1) {                           \
        if (pg[H1(i)] & 1) {                                    \
            TYPE nn = n[i];                                     \
            d[i] = OP(nn, imm);                                 \
        }                                                       \
    }                                                           \
}

#define DO_SHR(N, M)  (N >> M)
#define DO_SHL(N, M)  (N << M)

/* Arithmetic shift right for division.  This rounds negative numbers
   toward zero as per signed division.  Therefore before shifting,
   when N is negative, add 2**M-1.  */
#define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M)

DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR)
DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR)
DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR)
DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR)

DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR)
DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR)
DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR)
DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR)

DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL)
DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL)
DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL)
DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL)

DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD)
DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD)
DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD)
DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD)

#undef DO_SHR
#undef DO_SHL
#undef DO_ASRD
#undef DO_ZPZI
#undef DO_ZPZI_D

/* Fully general four-operand expander, controlled by a predicate.
 */
#define DO_ZPZZZ(NAME, TYPE, H, OP)                           \
void HELPER(NAME)(void *vd, void *va, void *vn, void *vm,     \
                  void *vg, uint32_t desc)                    \
{                                                             \
    intptr_t i, opr_sz = simd_oprsz(desc);                    \
    for (i = 0; i < opr_sz; ) {                               \
        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));       \
        do {                                                  \
            if (pg & 1) {                                     \
                TYPE nn = *(TYPE *)(vn + H(i));               \
                TYPE mm = *(TYPE *)(vm + H(i));               \
                TYPE aa = *(TYPE *)(va + H(i));               \
                *(TYPE *)(vd + H(i)) = OP(aa, nn, mm);        \
            }                                                 \
            i += sizeof(TYPE), pg >>= sizeof(TYPE);           \
        } while (i & 15);                                     \
    }                                                         \
}

/* Similarly, specialized for 64-bit operands.  */
#define DO_ZPZZZ_D(NAME, TYPE, OP)                            \
void HELPER(NAME)(void *vd, void *va, void *vn, void *vm,     \
                  void *vg, uint32_t desc)                    \
{                                                             \
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;                \
    TYPE *d = vd, *a = va, *n = vn, *m = vm;                  \
    uint8_t *pg = vg;                                         \
    for (i = 0; i < opr_sz; i += 1) {                         \
        if (pg[H1(i)] & 1) {                                  \
            TYPE aa = a[i], nn = n[i], mm = m[i];             \
            d[i] = OP(aa, nn, mm);                            \
        }                                                     \
    }                                                         \
}

#define DO_MLA(A, N, M)  (A + N * M)
#define DO_MLS(A, N, M)  (A - N * M)

DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA)
DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS)

DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA)
DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS)

DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA)
DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS)

DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA)
DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS)

#undef DO_MLA
#undef DO_MLS
#undef DO_ZPZZZ
#undef DO_ZPZZZ_D

void HELPER(sve_index_b)(void *vd, uint32_t start,
                         uint32_t incr, uint32_t desc)
{
    intptr_t i, opr_sz = simd_oprsz(desc);
    uint8_t *d = vd;
    for (i = 0; i < opr_sz; i += 1) {
        d[H1(i)] = start + i * incr;
    }
}

void HELPER(sve_index_h)(void *vd, uint32_t start,
                         uint32_t incr, uint32_t desc)
{
    intptr_t i, opr_sz = simd_oprsz(desc) / 2;
    uint16_t *d = vd;
    for (i = 0; i < opr_sz; i += 1) {
        d[H2(i)] = start + i * incr;
    }
}

void HELPER(sve_index_s)(void *vd, uint32_t start,
                         uint32_t incr, uint32_t desc)
{
    intptr_t i, opr_sz = simd_oprsz(desc) / 4;
    uint32_t *d = vd;
    for (i = 0; i < opr_sz; i += 1) {
        d[H4(i)] = start + i * incr;
    }
}

void HELPER(sve_index_d)(void *vd, uint64_t start,
                         uint64_t incr, uint32_t desc)
{
    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
    uint64_t *d = vd;
    for (i = 0; i < opr_sz; i += 1) {
        d[i] = start + i * incr;
    }
}