aboutsummaryrefslogtreecommitdiff
path: root/target/arm/op_helper.c
blob: 5e1625a1c8a3f9f9d9ba642fa710d3f5b043d772 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
/*
 *  ARM helper routines
 *
 *  Copyright (c) 2005-2007 CodeSourcery, LLC
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"

#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)

static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp,
                                    uint32_t syndrome, uint32_t target_el)
{
    CPUState *cs = env_cpu(env);

    if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
        /*
         * Redirect NS EL1 exceptions to NS EL2. These are reported with
         * their original syndrome register value, with the exception of
         * SIMD/FP access traps, which are reported as uncategorized
         * (see DDI0478C.a D1.10.4)
         */
        target_el = 2;
        if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
            syndrome = syn_uncategorized();
        }
    }

    assert(!excp_is_internal(excp));
    cs->exception_index = excp;
    env->exception.syndrome = syndrome;
    env->exception.target_el = target_el;

    return cs;
}

void raise_exception(CPUARMState *env, uint32_t excp,
                     uint32_t syndrome, uint32_t target_el)
{
    CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
    cpu_loop_exit(cs);
}

void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
                        uint32_t target_el, uintptr_t ra)
{
    CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
    cpu_loop_exit_restore(cs, ra);
}

uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
                          uint32_t maxindex)
{
    uint32_t val, shift;
    uint64_t *table = vn;

    val = 0;
    for (shift = 0; shift < 32; shift += 8) {
        uint32_t index = (ireg >> shift) & 0xff;
        if (index < maxindex) {
            uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
            val |= tmp << shift;
        } else {
            val |= def & (0xff << shift);
        }
    }
    return val;
}

void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
{
    /*
     * Perform the v8M stack limit check for SP updates from translated code,
     * raising an exception if the limit is breached.
     */
    if (newvalue < v7m_sp_limit(env)) {
        CPUState *cs = env_cpu(env);

        /*
         * Stack limit exceptions are a rare case, so rather than syncing
         * PC/condbits before the call, we use cpu_restore_state() to
         * get them right before raising the exception.
         */
        cpu_restore_state(cs, GETPC(), true);
        raise_exception(env, EXCP_STKOF, 0, 1);
    }
}

uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
        env->QF = 1;
    return res;
}

uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
    uint32_t res = a - b;
    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
{
    uint32_t res;
    if (val >= 0x40000000) {
        res = ~SIGNBIT;
        env->QF = 1;
    } else if (val <= (int32_t)0xc0000000) {
        res = SIGNBIT;
        env->QF = 1;
    } else {
        res = val << 1;
    }
    return res;
}

uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
    uint32_t res = a + b;
    if (res < a) {
        env->QF = 1;
        res = ~0;
    }
    return res;
}

uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
    uint32_t res = a - b;
    if (res > a) {
        env->QF = 1;
        res = 0;
    }
    return res;
}

/* Signed saturation.  */
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
{
    int32_t top;
    uint32_t mask;

    top = val >> shift;
    mask = (1u << shift) - 1;
    if (top > 0) {
        env->QF = 1;
        return mask;
    } else if (top < -1) {
        env->QF = 1;
        return ~mask;
    }
    return val;
}

/* Unsigned saturation.  */
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
{
    uint32_t max;

    max = (1u << shift) - 1;
    if (val < 0) {
        env->QF = 1;
        return 0;
    } else if (val > max) {
        env->QF = 1;
        return max;
    }
    return val;
}

/* Signed saturate.  */
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
    return do_ssat(env, x, shift);
}

/* Dual halfword signed saturate.  */
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
    uint32_t res;

    res = (uint16_t)do_ssat(env, (int16_t)x, shift);
    res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
    return res;
}

/* Unsigned saturate.  */
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
    return do_usat(env, x, shift);
}

/* Dual halfword unsigned saturate.  */
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
    uint32_t res;

    res = (uint16_t)do_usat(env, (int16_t)x, shift);
    res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
    return res;
}

void HELPER(setend)(CPUARMState *env)
{
    env->uncached_cpsr ^= CPSR_E;
}

/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
 * The function returns the target EL (1-3) if the instruction is to be trapped;
 * otherwise it returns 0 indicating it is not trapped.
 */
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
{
    int cur_el = arm_current_el(env);
    uint64_t mask;

    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile cores can never trap WFI/WFE. */
        return 0;
    }

    /* If we are currently in EL0 then we need to check if SCTLR is set up for
     * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
     */
    if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
        int target_el;

        mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
        if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
            /* Secure EL0 and Secure PL1 is at EL3 */
            target_el = 3;
        } else {
            target_el = 1;
        }

        if (!(env->cp15.sctlr_el[target_el] & mask)) {
            return target_el;
        }
    }

    /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
     * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
     * bits will be zero indicating no trap.
     */
    if (cur_el < 2) {
        mask = is_wfe ? HCR_TWE : HCR_TWI;
        if (arm_hcr_el2_eff(env) & mask) {
            return 2;
        }
    }

    /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
    if (cur_el < 3) {
        mask = (is_wfe) ? SCR_TWE : SCR_TWI;
        if (env->cp15.scr_el3 & mask) {
            return 3;
        }
    }

    return 0;
}

void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
{
    CPUState *cs = env_cpu(env);
    int target_el = check_wfx_trap(env, false);

    if (cpu_has_work(cs)) {
        /* Don't bother to go into our "low power state" if
         * we would just wake up immediately.
         */
        return;
    }

    if (target_el) {
        env->pc -= insn_len;
        raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
                        target_el);
    }

    cs->exception_index = EXCP_HLT;
    cs->halted = 1;
    cpu_loop_exit(cs);
}

void HELPER(wfe)(CPUARMState *env)
{
    /* This is a hint instruction that is semantically different
     * from YIELD even though we currently implement it identically.
     * Don't actually halt the CPU, just yield back to top
     * level loop. This is not going into a "low power state"
     * (ie halting until some event occurs), so we never take
     * a configurable trap to a different exception level.
     */
    HELPER(yield)(env);
}

void HELPER(yield)(CPUARMState *env)
{
    CPUState *cs = env_cpu(env);

    /* This is a non-trappable hint instruction that generally indicates
     * that the guest is currently busy-looping. Yield control back to the
     * top level loop so that a more deserving VCPU has a chance to run.
     */
    cs->exception_index = EXCP_YIELD;
    cpu_loop_exit(cs);
}

/* Raise an internal-to-QEMU exception. This is limited to only
 * those EXCP values which are special cases for QEMU to interrupt
 * execution and not to be used for exceptions which are passed to
 * the guest (those must all have syndrome information and thus should
 * use exception_with_syndrome).
 */
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
    CPUState *cs = env_cpu(env);

    assert(excp_is_internal(excp));
    cs->exception_index = excp;
    cpu_loop_exit(cs);
}

/* Raise an exception with the specified syndrome register value */
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
                                     uint32_t syndrome, uint32_t target_el)
{
    raise_exception(env, excp, syndrome, target_el);
}

/* Raise an EXCP_BKPT with the specified syndrome register value,
 * targeting the correct exception level for debug exceptions.
 */
void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
{
    int debug_el = arm_debug_target_el(env);
    int cur_el = arm_current_el(env);

    /* FSR will only be used if the debug target EL is AArch32. */
    env->exception.fsr = arm_debug_exception_fsr(env);
    /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
     * values to the guest that it shouldn't be able to see at its
     * exception/security level.
     */
    env->exception.vaddress = 0;
    /*
     * Other kinds of architectural debug exception are ignored if
     * they target an exception level below the current one (in QEMU
     * this is checked by arm_generate_debug_exceptions()). Breakpoint
     * instructions are special because they always generate an exception
     * to somewhere: if they can't go to the configured debug exception
     * level they are taken to the current exception level.
     */
    if (debug_el < cur_el) {
        debug_el = cur_el;
    }
    raise_exception(env, EXCP_BKPT, syndrome, debug_el);
}

uint32_t HELPER(cpsr_read)(CPUARMState *env)
{
    return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
}

void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
{
    cpsr_write(env, val, mask, CPSRWriteByInstr);
}

/* Write the CPSR for a 32-bit exception return */
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
    qemu_mutex_lock_iothread();
    arm_call_pre_el_change_hook(env_archcpu(env));
    qemu_mutex_unlock_iothread();

    cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);

    /* Generated code has already stored the new PC value, but
     * without masking out its low bits, because which bits need
     * masking depends on whether we're returning to Thumb or ARM
     * state. Do the masking now.
     */
    env->regs[15] &= (env->thumb ? ~1 : ~3);

    qemu_mutex_lock_iothread();
    arm_call_el_change_hook(env_archcpu(env));
    qemu_mutex_unlock_iothread();
}

/* Access to user mode registers from privileged modes.  */
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
{
    uint32_t val;

    if (regno == 13) {
        val = env->banked_r13[BANK_USRSYS];
    } else if (regno == 14) {
        val = env->banked_r14[BANK_USRSYS];
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        val = env->usr_regs[regno - 8];
    } else {
        val = env->regs[regno];
    }
    return val;
}

void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
{
    if (regno == 13) {
        env->banked_r13[BANK_USRSYS] = val;
    } else if (regno == 14) {
        env->banked_r14[BANK_USRSYS] = val;
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        env->usr_regs[regno - 8] = val;
    } else {
        env->regs[regno] = val;
    }
}

void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
        env->banked_r13[bank_number(mode)] = val;
    }
}

uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
        /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
         * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
         */
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
    }

    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
        return env->banked_r13[bank_number(mode)];
    }
}

static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
                                      uint32_t regno)
{
    /* Raise an exception if the requested access is one of the UNPREDICTABLE
     * cases; otherwise return. This broadly corresponds to the pseudocode
     * BankedRegisterAccessValid() and SPSRAccessValid(),
     * except that we have already handled some cases at translate time.
     */
    int curmode = env->uncached_cpsr & CPSR_M;

    if (regno == 17) {
        /* ELR_Hyp: a special case because access from tgtmode is OK */
        if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
            goto undef;
        }
        return;
    }

    if (curmode == tgtmode) {
        goto undef;
    }

    if (tgtmode == ARM_CPU_MODE_USR) {
        switch (regno) {
        case 8 ... 12:
            if (curmode != ARM_CPU_MODE_FIQ) {
                goto undef;
            }
            break;
        case 13:
            if (curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        case 14:
            if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        default:
            break;
        }
    }

    if (tgtmode == ARM_CPU_MODE_HYP) {
        /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
        if (curmode != ARM_CPU_MODE_MON) {
            goto undef;
        }
    }

    return;

undef:
    raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                    exception_target_el(env));
}

void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
                        uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        env->banked_spsr[bank_number(tgtmode)] = value;
        break;
    case 17: /* ELR_Hyp */
        env->elr_el[2] = value;
        break;
    case 13:
        env->banked_r13[bank_number(tgtmode)] = value;
        break;
    case 14:
        env->banked_r14[r14_bank_number(tgtmode)] = value;
        break;
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            env->usr_regs[regno - 8] = value;
            break;
        case ARM_CPU_MODE_FIQ:
            env->fiq_regs[regno - 8] = value;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    default:
        g_assert_not_reached();
    }
}

uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        return env->banked_spsr[bank_number(tgtmode)];
    case 17: /* ELR_Hyp */
        return env->elr_el[2];
    case 13:
        return env->banked_r13[bank_number(tgtmode)];
    case 14:
        return env->banked_r14[r14_bank_number(tgtmode)];
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            return env->usr_regs[regno - 8];
        case ARM_CPU_MODE_FIQ:
            return env->fiq_regs[regno - 8];
        default:
            g_assert_not_reached();
        }
    default:
        g_assert_not_reached();
    }
}

void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
                                 uint32_t isread)
{
    const ARMCPRegInfo *ri = rip;
    int target_el;

    if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
        && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
    }

    if (!ri->accessfn) {
        return;
    }

    switch (ri->accessfn(env, ri, isread)) {
    case CP_ACCESS_OK:
        return;
    case CP_ACCESS_TRAP:
        target_el = exception_target_el(env);
        break;
    case CP_ACCESS_TRAP_EL2:
        /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
         * a bug in the access function.
         */
        assert(!arm_is_secure(env) && arm_current_el(env) != 3);
        target_el = 2;
        break;
    case CP_ACCESS_TRAP_EL3:
        target_el = 3;
        break;
    case CP_ACCESS_TRAP_UNCATEGORIZED:
        target_el = exception_target_el(env);
        syndrome = syn_uncategorized();
        break;
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
        target_el = 2;
        syndrome = syn_uncategorized();
        break;
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
        target_el = 3;
        syndrome = syn_uncategorized();
        break;
    case CP_ACCESS_TRAP_FP_EL2:
        target_el = 2;
        /* Since we are an implementation that takes exceptions on a trapped
         * conditional insn only if the insn has passed its condition code
         * check, we take the IMPDEF choice to always report CV=1 COND=0xe
         * (which is also the required value for AArch64 traps).
         */
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
    case CP_ACCESS_TRAP_FP_EL3:
        target_el = 3;
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
    default:
        g_assert_not_reached();
    }

    raise_exception(env, EXCP_UDEF, syndrome, target_el);
}

void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
{
    const ARMCPRegInfo *ri = rip;

    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        ri->writefn(env, ri, value);
        qemu_mutex_unlock_iothread();
    } else {
        ri->writefn(env, ri, value);
    }
}

uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
    uint32_t res;

    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        res = ri->readfn(env, ri);
        qemu_mutex_unlock_iothread();
    } else {
        res = ri->readfn(env, ri);
    }

    return res;
}

void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
{
    const ARMCPRegInfo *ri = rip;

    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        ri->writefn(env, ri, value);
        qemu_mutex_unlock_iothread();
    } else {
        ri->writefn(env, ri, value);
    }
}

uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
    uint64_t res;

    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        res = ri->readfn(env, ri);
        qemu_mutex_unlock_iothread();
    } else {
        res = ri->readfn(env, ri);
    }

    return res;
}

void HELPER(pre_hvc)(CPUARMState *env)
{
    ARMCPU *cpu = env_archcpu(env);
    int cur_el = arm_current_el(env);
    /* FIXME: Use actual secure state.  */
    bool secure = false;
    bool undef;

    if (arm_is_psci_call(cpu, EXCP_HVC)) {
        /* If PSCI is enabled and this looks like a valid PSCI call then
         * that overrides the architecturally mandated HVC behaviour.
         */
        return;
    }

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        /* If EL2 doesn't exist, HVC always UNDEFs */
        undef = true;
    } else if (arm_feature(env, ARM_FEATURE_EL3)) {
        /* EL3.HCE has priority over EL2.HCD. */
        undef = !(env->cp15.scr_el3 & SCR_HCE);
    } else {
        undef = env->cp15.hcr_el2 & HCR_HCD;
    }

    /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
     * For ARMv8/AArch64, HVC is allowed in EL3.
     * Note that we've already trapped HVC from EL0 at translation
     * time.
     */
    if (secure && (!is_a64(env) || cur_el == 1)) {
        undef = true;
    }

    if (undef) {
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
    }
}

void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
    ARMCPU *cpu = env_archcpu(env);
    int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);
    bool smd_flag = env->cp15.scr_el3 & SCR_SMD;

    /*
     * SMC behaviour is summarized in the following table.
     * This helper handles the "Trap to EL2" and "Undef insn" cases.
     * The "Trap to EL3" and "PSCI call" cases are handled in the exception
     * helper.
     *
     *  -> ARM_FEATURE_EL3 and !SMD
     *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
     *
     *  Conduit SMC, valid call  Trap to EL2         PSCI Call
     *  Conduit SMC, inval call  Trap to EL2         Trap to EL3
     *  Conduit not SMC          Trap to EL2         Trap to EL3
     *
     *
     *  -> ARM_FEATURE_EL3 and SMD
     *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
     *
     *  Conduit SMC, valid call  Trap to EL2         PSCI Call
     *  Conduit SMC, inval call  Trap to EL2         Undef insn
     *  Conduit not SMC          Trap to EL2         Undef insn
     *
     *
     *  -> !ARM_FEATURE_EL3
     *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
     *
     *  Conduit SMC, valid call  Trap to EL2         PSCI Call
     *  Conduit SMC, inval call  Trap to EL2         Undef insn
     *  Conduit not SMC          Undef insn          Undef insn
     */

    /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
     * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
     *  extensions, SMD only applies to NS state.
     * On ARMv7 without the Virtualization extensions, the SMD bit
     * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
     * so we need not special case this here.
     */
    bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
                                                     : smd_flag && !secure;

    if (!arm_feature(env, ARM_FEATURE_EL3) &&
        cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
        /* If we have no EL3 then SMC always UNDEFs and can't be
         * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
         * firmware within QEMU, and we want an EL2 guest to be able
         * to forbid its EL1 from making PSCI calls into QEMU's
         * "firmware" via HCR.TSC, so for these purposes treat
         * PSCI-via-SMC as implying an EL3.
         * This handles the very last line of the previous table.
         */
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
    }

    if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
        /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
         * We also want an EL2 guest to be able to forbid its EL1 from
         * making PSCI calls into QEMU's "firmware" via HCR.TSC.
         * This handles all the "Trap to EL2" cases of the previous table.
         */
        raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
    }

    /* Catch the two remaining "Undef insn" cases of the previous table:
     *    - PSCI conduit is SMC but we don't have a valid PCSI call,
     *    - We don't have EL3 or SMD is set.
     */
    if (!arm_is_psci_call(cpu, EXCP_SMC) &&
        (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
    }
}

/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
   The only way to do that in TCG is a conditional branch, which clobbers
   all our temporaries.  For now implement these as helper functions.  */

/* Similarly for variable shift instructions.  */

uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = x & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (32 - shift)) & 1;
        return x << shift;
    }
    return x;
}

uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = (x >> 31) & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return x >> shift;
    }
    return x;
}

uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
    int shift = i & 0xff;
    if (shift >= 32) {
        env->CF = (x >> 31) & 1;
        return (int32_t)x >> 31;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return (int32_t)x >> shift;
    }
    return x;
}

uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
    int shift1, shift;
    shift1 = i & 0xff;
    shift = shift1 & 0x1f;
    if (shift == 0) {
        if (shift1 != 0)
            env->CF = (x >> 31) & 1;
        return x;
    } else {
        env->CF = (x >> (shift - 1)) & 1;
        return ((uint32_t)x >> shift) | (x << (32 - shift));
    }
}

void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /*
     * Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = env_archcpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /*
         * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable. So in practice the hostaddr[] array has
         * two entries, given the current setting of TARGET_PAGE_BITS_MIN.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
        int try, i;
        unsigned mmu_idx = cpu_mmu_index(env, false);
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);

        assert(maxidx <= ARRAY_SIZE(hostaddr));

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
                                                1, mmu_idx);
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /*
                 * If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /*
             * OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
                    helper_ret_stb_mmu(env, va, 0, oi, GETPC());
                }
            }
        }

        /*
         * Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}