1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
|
/*
* M-profile MVE Operations
*
* Copyright (c) 2021 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "vec_internal.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "exec/exec-all.h"
#include "tcg/tcg.h"
static uint16_t mve_element_mask(CPUARMState *env)
{
/*
* Return the mask of which elements in the MVE vector should be
* updated. This is a combination of multiple things:
* (1) by default, we update every lane in the vector
* (2) VPT predication stores its state in the VPR register;
* (3) low-overhead-branch tail predication will mask out part
* the vector on the final iteration of the loop
* (4) if EPSR.ECI is set then we must execute only some beats
* of the insn
* We combine all these into a 16-bit result with the same semantics
* as VPR.P0: 0 to mask the lane, 1 if it is active.
* 8-bit vector ops will look at all bits of the result;
* 16-bit ops will look at bits 0, 2, 4, ...;
* 32-bit ops will look at bits 0, 4, 8 and 12.
* Compare pseudocode GetCurInstrBeat(), though that only returns
* the 4-bit slice of the mask corresponding to a single beat.
*/
uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
mask |= 0xff;
}
if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
mask |= 0xff00;
}
if (env->v7m.ltpsize < 4 &&
env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
/*
* Tail predication active, and this is the last loop iteration.
* The element size is (1 << ltpsize), and we only want to process
* loopcount elements, so we want to retain the least significant
* (loopcount * esize) predicate bits and zero out bits above that.
*/
int masklen = env->regs[14] << env->v7m.ltpsize;
assert(masklen <= 16);
mask &= MAKE_64BIT_MASK(0, masklen);
}
if ((env->condexec_bits & 0xf) == 0) {
/*
* ECI bits indicate which beats are already executed;
* we handle this by effectively predicating them out.
*/
int eci = env->condexec_bits >> 4;
switch (eci) {
case ECI_NONE:
break;
case ECI_A0:
mask &= 0xfff0;
break;
case ECI_A0A1:
mask &= 0xff00;
break;
case ECI_A0A1A2:
case ECI_A0A1A2B0:
mask &= 0xf000;
break;
default:
g_assert_not_reached();
}
}
return mask;
}
static void mve_advance_vpt(CPUARMState *env)
{
/* Advance the VPT and ECI state if necessary */
uint32_t vpr = env->v7m.vpr;
unsigned mask01, mask23;
if ((env->condexec_bits & 0xf) == 0) {
env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
(ECI_A0 << 4) : (ECI_NONE << 4);
}
if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
/* VPT not enabled, nothing to do */
return;
}
mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
if (mask01 > 8) {
/* high bit set, but not 0b1000: invert the relevant half of P0 */
vpr ^= 0xff;
}
if (mask23 > 8) {
/* high bit set, but not 0b1000: invert the relevant half of P0 */
vpr ^= 0xff00;
}
vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
env->v7m.vpr = vpr;
}
#define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE) \
void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
{ \
TYPE *d = vd; \
uint16_t mask = mve_element_mask(env); \
unsigned b, e; \
/* \
* R_SXTM allows the dest reg to become UNKNOWN for abandoned \
* beats so we don't care if we update part of the dest and \
* then take an exception. \
*/ \
for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
if (mask & (1 << b)) { \
d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \
} \
addr += MSIZE; \
} \
mve_advance_vpt(env); \
}
#define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE) \
void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
{ \
TYPE *d = vd; \
uint16_t mask = mve_element_mask(env); \
unsigned b, e; \
for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
if (mask & (1 << b)) { \
cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
} \
addr += MSIZE; \
} \
mve_advance_vpt(env); \
}
DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
DO_VSTR(vstrb, 1, stb, 1, uint8_t)
DO_VSTR(vstrh, 2, stw, 2, uint16_t)
DO_VSTR(vstrw, 4, stl, 4, uint32_t)
DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
#undef DO_VLDR
#undef DO_VSTR
/*
* The mergemask(D, R, M) macro performs the operation "*D = R" but
* storing only the bytes which correspond to 1 bits in M,
* leaving other bytes in *D unchanged. We use _Generic
* to select the correct implementation based on the type of D.
*/
static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
{
if (mask & 1) {
*d = r;
}
}
static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
{
mergemask_ub((uint8_t *)d, r, mask);
}
static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
{
uint16_t bmask = expand_pred_b_data[mask & 3];
*d = (*d & ~bmask) | (r & bmask);
}
static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
{
mergemask_uh((uint16_t *)d, r, mask);
}
static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
{
uint32_t bmask = expand_pred_b_data[mask & 0xf];
*d = (*d & ~bmask) | (r & bmask);
}
static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
{
mergemask_uw((uint32_t *)d, r, mask);
}
static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
{
uint64_t bmask = expand_pred_b_data[mask & 0xff];
*d = (*d & ~bmask) | (r & bmask);
}
static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
{
mergemask_uq((uint64_t *)d, r, mask);
}
#define mergemask(D, R, M) \
_Generic(D, \
uint8_t *: mergemask_ub, \
int8_t *: mergemask_sb, \
uint16_t *: mergemask_uh, \
int16_t *: mergemask_sh, \
uint32_t *: mergemask_uw, \
int32_t *: mergemask_sw, \
uint64_t *: mergemask_uq, \
int64_t *: mergemask_sq)(D, R, M)
void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
{
/*
* The generated code already replicated an 8 or 16 bit constant
* into the 32-bit value, so we only need to write the 32-bit
* value to all elements of the Qreg, allowing for predication.
*/
uint32_t *d = vd;
uint16_t mask = mve_element_mask(env);
unsigned e;
for (e = 0; e < 16 / 4; e++, mask >>= 4) {
mergemask(&d[H4(e)], val, mask);
}
mve_advance_vpt(env);
}
#define DO_1OP(OP, ESIZE, TYPE, FN) \
void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
{ \
TYPE *d = vd, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask); \
} \
mve_advance_vpt(env); \
}
#define DO_CLS_B(N) (clrsb32(N) - 24)
#define DO_CLS_H(N) (clrsb32(N) - 16)
DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
DO_1OP(vclsw, 4, int32_t, clrsb32)
#define DO_CLZ_B(N) (clz32(N) - 24)
#define DO_CLZ_H(N) (clz32(N) - 16)
DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
DO_1OP(vclzw, 4, uint32_t, clz32)
DO_1OP(vrev16b, 2, uint16_t, bswap16)
DO_1OP(vrev32b, 4, uint32_t, bswap32)
DO_1OP(vrev32h, 4, uint32_t, hswap32)
DO_1OP(vrev64b, 8, uint64_t, bswap64)
DO_1OP(vrev64h, 8, uint64_t, hswap64)
DO_1OP(vrev64w, 8, uint64_t, wswap64)
#define DO_NOT(N) (~(N))
DO_1OP(vmvn, 8, uint64_t, DO_NOT)
#define DO_ABS(N) ((N) < 0 ? -(N) : (N))
#define DO_FABSH(N) ((N) & dup_const(MO_16, 0x7fff))
#define DO_FABSS(N) ((N) & dup_const(MO_32, 0x7fffffff))
DO_1OP(vabsb, 1, int8_t, DO_ABS)
DO_1OP(vabsh, 2, int16_t, DO_ABS)
DO_1OP(vabsw, 4, int32_t, DO_ABS)
/* We can do these 64 bits at a time */
DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
#define DO_NEG(N) (-(N))
#define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
#define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
DO_1OP(vnegb, 1, int8_t, DO_NEG)
DO_1OP(vnegh, 2, int16_t, DO_NEG)
DO_1OP(vnegw, 4, int32_t, DO_NEG)
/* We can do these 64 bits at a time */
DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
/*
* 1 operand immediates: Vda is destination and possibly also one source.
* All these insns work at 64-bit widths.
*/
#define DO_1OP_IMM(OP, FN) \
void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm) \
{ \
uint64_t *da = vda; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / 8; e++, mask >>= 8) { \
mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask); \
} \
mve_advance_vpt(env); \
}
#define DO_MOVI(N, I) (I)
#define DO_ANDI(N, I) ((N) & (I))
#define DO_ORRI(N, I) ((N) | (I))
DO_1OP_IMM(vmovi, DO_MOVI)
DO_1OP_IMM(vandi, DO_ANDI)
DO_1OP_IMM(vorri, DO_ORRI)
#define DO_2OP(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, \
void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], \
FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask); \
} \
mve_advance_vpt(env); \
}
/* provide unsigned 2-op helpers for all sizes */
#define DO_2OP_U(OP, FN) \
DO_2OP(OP##b, 1, uint8_t, FN) \
DO_2OP(OP##h, 2, uint16_t, FN) \
DO_2OP(OP##w, 4, uint32_t, FN)
/* provide signed 2-op helpers for all sizes */
#define DO_2OP_S(OP, FN) \
DO_2OP(OP##b, 1, int8_t, FN) \
DO_2OP(OP##h, 2, int16_t, FN) \
DO_2OP(OP##w, 4, int32_t, FN)
/*
* "Long" operations where two half-sized inputs (taken from either the
* top or the bottom of the input vector) produce a double-width result.
* Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
*/
#define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
{ \
LTYPE *d = vd; \
TYPE *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned le; \
for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], \
m[H##ESIZE(le * 2 + TOP)]); \
mergemask(&d[H##LESIZE(le)], r, mask); \
} \
mve_advance_vpt(env); \
}
#define DO_2OP_SAT(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
bool qc = false; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
bool sat = false; \
TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat); \
mergemask(&d[H##ESIZE(e)], r, mask); \
qc |= sat & mask & 1; \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
/* provide unsigned 2-op helpers for all sizes */
#define DO_2OP_SAT_U(OP, FN) \
DO_2OP_SAT(OP##b, 1, uint8_t, FN) \
DO_2OP_SAT(OP##h, 2, uint16_t, FN) \
DO_2OP_SAT(OP##w, 4, uint32_t, FN)
/* provide signed 2-op helpers for all sizes */
#define DO_2OP_SAT_S(OP, FN) \
DO_2OP_SAT(OP##b, 1, int8_t, FN) \
DO_2OP_SAT(OP##h, 2, int16_t, FN) \
DO_2OP_SAT(OP##w, 4, int32_t, FN)
#define DO_AND(N, M) ((N) & (M))
#define DO_BIC(N, M) ((N) & ~(M))
#define DO_ORR(N, M) ((N) | (M))
#define DO_ORN(N, M) ((N) | ~(M))
#define DO_EOR(N, M) ((N) ^ (M))
DO_2OP(vand, 8, uint64_t, DO_AND)
DO_2OP(vbic, 8, uint64_t, DO_BIC)
DO_2OP(vorr, 8, uint64_t, DO_ORR)
DO_2OP(vorn, 8, uint64_t, DO_ORN)
DO_2OP(veor, 8, uint64_t, DO_EOR)
#define DO_ADD(N, M) ((N) + (M))
#define DO_SUB(N, M) ((N) - (M))
#define DO_MUL(N, M) ((N) * (M))
DO_2OP_U(vadd, DO_ADD)
DO_2OP_U(vsub, DO_SUB)
DO_2OP_U(vmul, DO_MUL)
DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
/*
* Because the computation type is at least twice as large as required,
* these work for both signed and unsigned source types.
*/
static inline uint8_t do_mulh_b(int32_t n, int32_t m)
{
return (n * m) >> 8;
}
static inline uint16_t do_mulh_h(int32_t n, int32_t m)
{
return (n * m) >> 16;
}
static inline uint32_t do_mulh_w(int64_t n, int64_t m)
{
return (n * m) >> 32;
}
static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
{
return (n * m + (1U << 7)) >> 8;
}
static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
{
return (n * m + (1U << 15)) >> 16;
}
static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
{
return (n * m + (1U << 31)) >> 32;
}
DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
#define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
#define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
DO_2OP_S(vmaxs, DO_MAX)
DO_2OP_U(vmaxu, DO_MAX)
DO_2OP_S(vmins, DO_MIN)
DO_2OP_U(vminu, DO_MIN)
#define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
DO_2OP_S(vabds, DO_ABD)
DO_2OP_U(vabdu, DO_ABD)
static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
{
return ((uint64_t)n + m) >> 1;
}
static inline int32_t do_vhadd_s(int32_t n, int32_t m)
{
return ((int64_t)n + m) >> 1;
}
static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
{
return ((uint64_t)n - m) >> 1;
}
static inline int32_t do_vhsub_s(int32_t n, int32_t m)
{
return ((int64_t)n - m) >> 1;
}
DO_2OP_S(vhadds, do_vhadd_s)
DO_2OP_U(vhaddu, do_vhadd_u)
DO_2OP_S(vhsubs, do_vhsub_s)
DO_2OP_U(vhsubu, do_vhsub_u)
#define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
#define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
#define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
#define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
DO_2OP_S(vshls, DO_VSHLS)
DO_2OP_U(vshlu, DO_VSHLU)
DO_2OP_S(vrshls, DO_VRSHLS)
DO_2OP_U(vrshlu, DO_VRSHLU)
#define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
#define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
DO_2OP_S(vrhadds, DO_RHADD_S)
DO_2OP_U(vrhaddu, DO_RHADD_U)
static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
uint32_t inv, uint32_t carry_in, bool update_flags)
{
uint16_t mask = mve_element_mask(env);
unsigned e;
/* If any additions trigger, we will update flags. */
if (mask & 0x1111) {
update_flags = true;
}
for (e = 0; e < 16 / 4; e++, mask >>= 4) {
uint64_t r = carry_in;
r += n[H4(e)];
r += m[H4(e)] ^ inv;
if (mask & 1) {
carry_in = r >> 32;
}
mergemask(&d[H4(e)], r, mask);
}
if (update_flags) {
/* Store C, clear NZV. */
env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
}
mve_advance_vpt(env);
}
void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
{
bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
do_vadc(env, vd, vn, vm, 0, carry_in, false);
}
void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
{
bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
do_vadc(env, vd, vn, vm, -1, carry_in, false);
}
void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
{
do_vadc(env, vd, vn, vm, 0, 0, true);
}
void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
{
do_vadc(env, vd, vn, vm, -1, 1, true);
}
#define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
TYPE r[16 / ESIZE]; \
/* Calculate all results first to avoid overwriting inputs */ \
for (e = 0; e < 16 / ESIZE; e++) { \
if (!(e & 1)) { \
r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]); \
} else { \
r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]); \
} \
} \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], r[e], mask); \
} \
mve_advance_vpt(env); \
}
#define DO_VCADD_ALL(OP, FN0, FN1) \
DO_VCADD(OP##b, 1, int8_t, FN0, FN1) \
DO_VCADD(OP##h, 2, int16_t, FN0, FN1) \
DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
{
if (val > max) {
*s = true;
return max;
} else if (val < min) {
*s = true;
return min;
}
return val;
}
#define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
#define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
#define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
#define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
#define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
#define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
#define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
#define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
#define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
#define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
#define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
#define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
/*
* For QDMULH and QRDMULH we simplify "double and shift by esize" into
* "shift by esize-1", adjusting the QRDMULH rounding constant to match.
*/
#define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
INT8_MIN, INT8_MAX, s)
#define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
INT16_MIN, INT16_MAX, s)
#define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
INT32_MIN, INT32_MAX, s)
#define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
INT8_MIN, INT8_MAX, s)
#define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
INT16_MIN, INT16_MAX, s)
#define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
INT32_MIN, INT32_MAX, s)
DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
/*
* This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
* and friends wanting a uint32_t* sat and our needing a bool*.
*/
#define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp) \
({ \
uint32_t su32 = 0; \
typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \
if (su32) { \
*satp = true; \
} \
r; \
})
#define DO_SQSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
#define DO_UQSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
#define DO_SQRSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
#define DO_UQRSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
#define DO_SUQSHL_OP(N, M, satp) \
WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
/*
* Multiply add dual returning high half
* The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
* whether to add the rounding constant, and the pointer to the
* saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
* saturate to twice the input size and return the high half; or
* (A * B - C * D) etc for VQDMLSDH.
*/
#define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
void *vm) \
{ \
TYPE *d = vd, *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
bool qc = false; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
bool sat = false; \
if ((e & 1) == XCHG) { \
TYPE r = FN(n[H##ESIZE(e)], \
m[H##ESIZE(e - XCHG)], \
n[H##ESIZE(e + (1 - 2 * XCHG))], \
m[H##ESIZE(e + (1 - XCHG))], \
ROUND, &sat); \
mergemask(&d[H##ESIZE(e)], r, mask); \
qc |= sat & mask & 1; \
} \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
int round, bool *sat)
{
int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
}
static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
int round, bool *sat)
{
int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
}
static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
int round, bool *sat)
{
int64_t m1 = (int64_t)a * b;
int64_t m2 = (int64_t)c * d;
int64_t r;
/*
* Architecturally we should do the entire add, double, round
* and then check for saturation. We do three saturating adds,
* but we need to be careful about the order. If the first
* m1 + m2 saturates then it's impossible for the *2+rc to
* bring it back into the non-saturated range. However, if
* m1 + m2 is negative then it's possible that doing the doubling
* would take the intermediate result below INT64_MAX and the
* addition of the rounding constant then brings it back in range.
* So we add half the rounding constant before doubling rather
* than adding the rounding constant after the doubling.
*/
if (sadd64_overflow(m1, m2, &r) ||
sadd64_overflow(r, (round << 30), &r) ||
sadd64_overflow(r, r, &r)) {
*sat = true;
return r < 0 ? INT32_MAX : INT32_MIN;
}
return r >> 32;
}
static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
int round, bool *sat)
{
int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
}
static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
int round, bool *sat)
{
int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
}
static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
int round, bool *sat)
{
int64_t m1 = (int64_t)a * b;
int64_t m2 = (int64_t)c * d;
int64_t r;
/* The same ordering issue as in do_vqdmladh_w applies here too */
if (ssub64_overflow(m1, m2, &r) ||
sadd64_overflow(r, (round << 30), &r) ||
sadd64_overflow(r, r, &r)) {
*sat = true;
return r < 0 ? INT32_MAX : INT32_MIN;
}
return r >> 32;
}
DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
#define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
uint32_t rm) \
{ \
TYPE *d = vd, *n = vn; \
TYPE m = rm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask); \
} \
mve_advance_vpt(env); \
}
#define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
uint32_t rm) \
{ \
TYPE *d = vd, *n = vn; \
TYPE m = rm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
bool qc = false; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
bool sat = false; \
mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat), \
mask); \
qc |= sat & mask & 1; \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
/* provide unsigned 2-op scalar helpers for all sizes */
#define DO_2OP_SCALAR_U(OP, FN) \
DO_2OP_SCALAR(OP##b, 1, uint8_t, FN) \
DO_2OP_SCALAR(OP##h, 2, uint16_t, FN) \
DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
#define DO_2OP_SCALAR_S(OP, FN) \
DO_2OP_SCALAR(OP##b, 1, int8_t, FN) \
DO_2OP_SCALAR(OP##h, 2, int16_t, FN) \
DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
/*
* Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
* input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
* SATMASK specifies which bits of the predicate mask matter for determining
* whether to propagate a saturation indication into FPSCR.QC -- for
* the 16x16->32 case we must check only the bit corresponding to the T or B
* half that we used, but for the 32x32->64 case we propagate if the mask
* bit is set for either half.
*/
#define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
uint32_t rm) \
{ \
LTYPE *d = vd; \
TYPE *n = vn; \
TYPE m = rm; \
uint16_t mask = mve_element_mask(env); \
unsigned le; \
bool qc = false; \
for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
bool sat = false; \
LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat); \
mergemask(&d[H##LESIZE(le)], r, mask); \
qc |= sat && (mask & SATMASK); \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
{
int64_t r = ((int64_t)n * m) * 2;
return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
}
static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
{
/* The multiply can't overflow, but the doubling might */
int64_t r = (int64_t)n * m;
if (r > INT64_MAX / 2) {
*sat = true;
return INT64_MAX;
} else if (r < INT64_MIN / 2) {
*sat = true;
return INT64_MIN;
} else {
return r * 2;
}
}
#define SATMASK16B 1
#define SATMASK16T (1 << 2)
#define SATMASK32 ((1 << 4) | 1)
DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
do_qdmullh, SATMASK16B)
DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
do_qdmullw, SATMASK32)
DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
do_qdmullh, SATMASK16T)
DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
do_qdmullw, SATMASK32)
/*
* Long saturating ops
*/
#define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
void *vm) \
{ \
LTYPE *d = vd; \
TYPE *n = vn, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned le; \
bool qc = false; \
for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
bool sat = false; \
LTYPE op1 = n[H##ESIZE(le * 2 + TOP)]; \
LTYPE op2 = m[H##ESIZE(le * 2 + TOP)]; \
mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask); \
qc |= sat && (mask & SATMASK); \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
{
m &= 0xff;
if (m == 0) {
return 0;
}
n = revbit8(n);
if (m < 8) {
n >>= 8 - m;
}
return n;
}
static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
{
m &= 0xff;
if (m == 0) {
return 0;
}
n = revbit16(n);
if (m < 16) {
n >>= 16 - m;
}
return n;
}
static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
{
m &= 0xff;
if (m == 0) {
return 0;
}
n = revbit32(n);
if (m < 32) {
n >>= 32 - m;
}
return n;
}
DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
/*
* Multiply add long dual accumulate ops.
*/
#define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
void *vm, uint64_t a) \
{ \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
TYPE *n = vn, *m = vm; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if (mask & 1) { \
if (e & 1) { \
a ODDACC \
(int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
} else { \
a EVENACC \
(int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
} \
} \
} \
mve_advance_vpt(env); \
return a; \
}
DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
/*
* Rounding multiply add long dual accumulate high. In the pseudocode
* this is implemented with a 72-bit internal accumulator value of which
* the top 64 bits are returned. We optimize this to avoid having to
* use 128-bit arithmetic -- we can do this because the 74-bit accumulator
* is squashed back into 64-bits after each beat.
*/
#define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB) \
uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
void *vm, uint64_t a) \
{ \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
TYPE *n = vn, *m = vm; \
for (e = 0; e < 16 / 4; e++, mask >>= 4) { \
if (mask & 1) { \
LTYPE mul; \
if (e & 1) { \
mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)]; \
if (SUB) { \
mul = -mul; \
} \
} else { \
mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)]; \
} \
mul = (mul >> 8) + ((mul >> 7) & 1); \
a += mul; \
} \
} \
mve_advance_vpt(env); \
return a; \
}
DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
/* Vector add across vector */
#define DO_VADDV(OP, ESIZE, TYPE) \
uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
uint32_t ra) \
{ \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
TYPE *m = vm; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
if (mask & 1) { \
ra += m[H##ESIZE(e)]; \
} \
} \
mve_advance_vpt(env); \
return ra; \
} \
DO_VADDV(vaddvsb, 1, uint8_t)
DO_VADDV(vaddvsh, 2, uint16_t)
DO_VADDV(vaddvsw, 4, uint32_t)
DO_VADDV(vaddvub, 1, uint8_t)
DO_VADDV(vaddvuh, 2, uint16_t)
DO_VADDV(vaddvuw, 4, uint32_t)
/* Shifts by immediate */
#define DO_2SHIFT(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
void *vm, uint32_t shift) \
{ \
TYPE *d = vd, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
mergemask(&d[H##ESIZE(e)], \
FN(m[H##ESIZE(e)], shift), mask); \
} \
mve_advance_vpt(env); \
}
#define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
void *vm, uint32_t shift) \
{ \
TYPE *d = vd, *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned e; \
bool qc = false; \
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
bool sat = false; \
mergemask(&d[H##ESIZE(e)], \
FN(m[H##ESIZE(e)], shift, &sat), mask); \
qc |= sat & mask & 1; \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
/* provide unsigned 2-op shift helpers for all sizes */
#define DO_2SHIFT_U(OP, FN) \
DO_2SHIFT(OP##b, 1, uint8_t, FN) \
DO_2SHIFT(OP##h, 2, uint16_t, FN) \
DO_2SHIFT(OP##w, 4, uint32_t, FN)
#define DO_2SHIFT_S(OP, FN) \
DO_2SHIFT(OP##b, 1, int8_t, FN) \
DO_2SHIFT(OP##h, 2, int16_t, FN) \
DO_2SHIFT(OP##w, 4, int32_t, FN)
#define DO_2SHIFT_SAT_U(OP, FN) \
DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN) \
DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN) \
DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
#define DO_2SHIFT_SAT_S(OP, FN) \
DO_2SHIFT_SAT(OP##b, 1, int8_t, FN) \
DO_2SHIFT_SAT(OP##h, 2, int16_t, FN) \
DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
DO_2SHIFT_U(vshli_u, DO_VSHLU)
DO_2SHIFT_S(vshli_s, DO_VSHLS)
DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
/* Shift-and-insert; we always work with 64 bits at a time */
#define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
void *vm, uint32_t shift) \
{ \
uint64_t *d = vd, *m = vm; \
uint16_t mask; \
uint64_t shiftmask; \
unsigned e; \
if (shift == 0 || shift == ESIZE * 8) { \
/* \
* Only VSLI can shift by 0; only VSRI can shift by <dt>. \
* The generic logic would give the right answer for 0 but \
* fails for <dt>. \
*/ \
goto done; \
} \
assert(shift < ESIZE * 8); \
mask = mve_element_mask(env); \
/* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */ \
shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift)); \
for (e = 0; e < 16 / 8; e++, mask >>= 8) { \
uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) | \
(d[H8(e)] & ~shiftmask); \
mergemask(&d[H8(e)], r, mask); \
} \
done: \
mve_advance_vpt(env); \
}
#define DO_SHL(N, SHIFT) ((N) << (SHIFT))
#define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
#define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
#define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
/*
* Long shifts taking half-sized inputs from top or bottom of the input
* vector and producing a double-width result. ESIZE, TYPE are for
* the input, and LESIZE, LTYPE for the output.
* Unlike the normal shift helpers, we do not handle negative shift counts,
* because the long shift is strictly left-only.
*/
#define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
void *vm, uint32_t shift) \
{ \
LTYPE *d = vd; \
TYPE *m = vm; \
uint16_t mask = mve_element_mask(env); \
unsigned le; \
assert(shift <= 16); \
for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift; \
mergemask(&d[H##LESIZE(le)], r, mask); \
} \
mve_advance_vpt(env); \
}
#define DO_VSHLL_ALL(OP, TOP) \
DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t) \
DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t) \
DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t) \
DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t) \
DO_VSHLL_ALL(vshllb, false)
DO_VSHLL_ALL(vshllt, true)
|