aboutsummaryrefslogtreecommitdiff
path: root/target/arm/mte_helper.c
blob: e09b7e46a2ff61e33dc6067cd463704de15fc7d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
/*
 * ARM v8.5-MemTag Operations
 *
 * Copyright (c) 2020 Linaro, Ltd.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "exec/ram_addr.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
#include "qapi/error.h"
#include "qemu/guest-random.h"


static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
{
    if (exclude == 0xffff) {
        return 0;
    }
    if (offset == 0) {
        while (exclude & (1 << tag)) {
            tag = (tag + 1) & 15;
        }
    } else {
        do {
            do {
                tag = (tag + 1) & 15;
            } while (exclude & (1 << tag));
        } while (--offset > 0);
    }
    return tag;
}

/**
 * allocation_tag_mem:
 * @env: the cpu environment
 * @ptr_mmu_idx: the addressing regime to use for the virtual address
 * @ptr: the virtual address for which to look up tag memory
 * @ptr_access: the access to use for the virtual address
 * @ptr_size: the number of bytes in the normal memory access
 * @tag_access: the access to use for the tag memory
 * @tag_size: the number of bytes in the tag memory access
 * @ra: the return address for exception handling
 *
 * Our tag memory is formatted as a sequence of little-endian nibbles.
 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
 * for the higher addr.
 *
 * Here, resolve the physical address from the virtual address, and return
 * a pointer to the corresponding tag byte.  Exit with exception if the
 * virtual address is not accessible for @ptr_access.
 *
 * The @ptr_size and @tag_size values may not have an obvious relation
 * due to the alignment of @ptr, and the number of tag checks required.
 *
 * If there is no tag storage corresponding to @ptr, return NULL.
 */
static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
                                   uint64_t ptr, MMUAccessType ptr_access,
                                   int ptr_size, MMUAccessType tag_access,
                                   int tag_size, uintptr_t ra)
{
#ifdef CONFIG_USER_ONLY
    uint64_t clean_ptr = useronly_clean_ptr(ptr);
    int flags = page_get_flags(clean_ptr);
    uint8_t *tags;
    uintptr_t index;

    if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
        cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
                              !(flags & PAGE_VALID), ra);
    }

    /* Require both MAP_ANON and PROT_MTE for the page. */
    if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
        return NULL;
    }

    tags = page_get_target_data(clean_ptr);
    if (tags == NULL) {
        size_t alloc_size = TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1);
        tags = page_alloc_target_data(clean_ptr, alloc_size);
        assert(tags != NULL);
    }

    index = extract32(ptr, LOG2_TAG_GRANULE + 1,
                      TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
    return tags + index;
#else
    uintptr_t index;
    CPUIOTLBEntry *iotlbentry;
    int in_page, flags;
    ram_addr_t ptr_ra;
    hwaddr ptr_paddr, tag_paddr, xlat;
    MemoryRegion *mr;
    ARMASIdx tag_asi;
    AddressSpace *tag_as;
    void *host;

    /*
     * Probe the first byte of the virtual address.  This raises an
     * exception for inaccessible pages, and resolves the virtual address
     * into the softmmu tlb.
     *
     * When RA == 0, this is for mte_probe.  The page is expected to be
     * valid.  Indicate to probe_access_flags no-fault, then assert that
     * we received a valid page.
     */
    flags = probe_access_flags(env, ptr, ptr_access, ptr_mmu_idx,
                               ra == 0, &host, ra);
    assert(!(flags & TLB_INVALID_MASK));

    /*
     * Find the iotlbentry for ptr.  This *must* be present in the TLB
     * because we just found the mapping.
     * TODO: Perhaps there should be a cputlb helper that returns a
     * matching tlb entry + iotlb entry.
     */
    index = tlb_index(env, ptr_mmu_idx, ptr);
# ifdef CONFIG_DEBUG_TCG
    {
        CPUTLBEntry *entry = tlb_entry(env, ptr_mmu_idx, ptr);
        target_ulong comparator = (ptr_access == MMU_DATA_LOAD
                                   ? entry->addr_read
                                   : tlb_addr_write(entry));
        g_assert(tlb_hit(comparator, ptr));
    }
# endif
    iotlbentry = &env_tlb(env)->d[ptr_mmu_idx].iotlb[index];

    /* If the virtual page MemAttr != Tagged, access unchecked. */
    if (!arm_tlb_mte_tagged(&iotlbentry->attrs)) {
        return NULL;
    }

    /*
     * If not backed by host ram, there is no tag storage: access unchecked.
     * This is probably a guest os bug though, so log it.
     */
    if (unlikely(flags & TLB_MMIO)) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
                      "but is not backed by host ram\n", ptr);
        return NULL;
    }

    /*
     * The Normal memory access can extend to the next page.  E.g. a single
     * 8-byte access to the last byte of a page will check only the last
     * tag on the first page.
     * Any page access exception has priority over tag check exception.
     */
    in_page = -(ptr | TARGET_PAGE_MASK);
    if (unlikely(ptr_size > in_page)) {
        void *ignore;
        flags |= probe_access_flags(env, ptr + in_page, ptr_access,
                                    ptr_mmu_idx, ra == 0, &ignore, ra);
        assert(!(flags & TLB_INVALID_MASK));
    }

    /* Any debug exception has priority over a tag check exception. */
    if (unlikely(flags & TLB_WATCHPOINT)) {
        int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
        assert(ra != 0);
        cpu_check_watchpoint(env_cpu(env), ptr, ptr_size,
                             iotlbentry->attrs, wp, ra);
    }

    /*
     * Find the physical address within the normal mem space.
     * The memory region lookup must succeed because TLB_MMIO was
     * not set in the cputlb lookup above.
     */
    mr = memory_region_from_host(host, &ptr_ra);
    tcg_debug_assert(mr != NULL);
    tcg_debug_assert(memory_region_is_ram(mr));
    ptr_paddr = ptr_ra;
    do {
        ptr_paddr += mr->addr;
        mr = mr->container;
    } while (mr);

    /* Convert to the physical address in tag space.  */
    tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);

    /* Look up the address in tag space. */
    tag_asi = iotlbentry->attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
    tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
    mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
                                 tag_access == MMU_DATA_STORE,
                                 iotlbentry->attrs);

    /*
     * Note that @mr will never be NULL.  If there is nothing in the address
     * space at @tag_paddr, the translation will return the unallocated memory
     * region.  For our purposes, the result must be ram.
     */
    if (unlikely(!memory_region_is_ram(mr))) {
        /* ??? Failure is a board configuration error. */
        qemu_log_mask(LOG_UNIMP,
                      "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
                      "Normal Memory @ 0x%" HWADDR_PRIx "\n",
                      tag_paddr, ptr_paddr);
        return NULL;
    }

    /*
     * Ensure the tag memory is dirty on write, for migration.
     * Tag memory can never contain code or display memory (vga).
     */
    if (tag_access == MMU_DATA_STORE) {
        ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
        cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
    }

    return memory_region_get_ram_ptr(mr) + xlat;
#endif
}

uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
{
    uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
    int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
    int start = extract32(env->cp15.rgsr_el1, 0, 4);
    int seed = extract32(env->cp15.rgsr_el1, 8, 16);
    int offset, i, rtag;

    /*
     * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
     * deterministic algorithm.  Except that with RRND==1 the kernel is
     * not required to have set RGSR_EL1.SEED != 0, which is required for
     * the deterministic algorithm to function.  So we force a non-zero
     * SEED for that case.
     */
    if (unlikely(seed == 0) && rrnd) {
        do {
            Error *err = NULL;
            uint16_t two;

            if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
                /*
                 * Failed, for unknown reasons in the crypto subsystem.
                 * Best we can do is log the reason and use a constant seed.
                 */
                qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
                              error_get_pretty(err));
                error_free(err);
                two = 1;
            }
            seed = two;
        } while (seed == 0);
    }

    /* RandomTag */
    for (i = offset = 0; i < 4; ++i) {
        /* NextRandomTagBit */
        int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
                   extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
        seed = (top << 15) | (seed >> 1);
        offset |= top << i;
    }
    rtag = choose_nonexcluded_tag(start, offset, exclude);
    env->cp15.rgsr_el1 = rtag | (seed << 8);

    return address_with_allocation_tag(rn, rtag);
}

uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
                         int32_t offset, uint32_t tag_offset)
{
    int start_tag = allocation_tag_from_addr(ptr);
    uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
    int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);

    return address_with_allocation_tag(ptr + offset, rtag);
}

static int load_tag1(uint64_t ptr, uint8_t *mem)
{
    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
    return extract32(*mem, ofs, 4);
}

uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
    int mmu_idx = cpu_mmu_index(env, false);
    uint8_t *mem;
    int rtag = 0;

    /* Trap if accessing an invalid page.  */
    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
                             MMU_DATA_LOAD, 1, GETPC());

    /* Load if page supports tags. */
    if (mem) {
        rtag = load_tag1(ptr, mem);
    }

    return address_with_allocation_tag(xt, rtag);
}

static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
{
    if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
        arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
                                    cpu_mmu_index(env, false), ra);
        g_assert_not_reached();
    }
}

/* For use in a non-parallel context, store to the given nibble.  */
static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
{
    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
    *mem = deposit32(*mem, ofs, 4, tag);
}

/* For use in a parallel context, atomically store to the given nibble.  */
static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
{
    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
    uint8_t old = qatomic_read(mem);

    while (1) {
        uint8_t new = deposit32(old, ofs, 4, tag);
        uint8_t cmp = qatomic_cmpxchg(mem, old, new);
        if (likely(cmp == old)) {
            return;
        }
        old = cmp;
    }
}

typedef void stg_store1(uint64_t, uint8_t *, int);

static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
                          uintptr_t ra, stg_store1 store1)
{
    int mmu_idx = cpu_mmu_index(env, false);
    uint8_t *mem;

    check_tag_aligned(env, ptr, ra);

    /* Trap if accessing an invalid page.  */
    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
                             MMU_DATA_STORE, 1, ra);

    /* Store if page supports tags. */
    if (mem) {
        store1(ptr, mem, allocation_tag_from_addr(xt));
    }
}

void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
    do_stg(env, ptr, xt, GETPC(), store_tag1);
}

void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
    do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
}

void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
{
    int mmu_idx = cpu_mmu_index(env, false);
    uintptr_t ra = GETPC();

    check_tag_aligned(env, ptr, ra);
    probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
}

static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
                           uintptr_t ra, stg_store1 store1)
{
    int mmu_idx = cpu_mmu_index(env, false);
    int tag = allocation_tag_from_addr(xt);
    uint8_t *mem1, *mem2;

    check_tag_aligned(env, ptr, ra);

    /*
     * Trap if accessing an invalid page(s).
     * This takes priority over !allocation_tag_access_enabled.
     */
    if (ptr & TAG_GRANULE) {
        /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
                                  TAG_GRANULE, MMU_DATA_STORE, 1, ra);
        mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
                                  MMU_DATA_STORE, TAG_GRANULE,
                                  MMU_DATA_STORE, 1, ra);

        /* Store if page(s) support tags. */
        if (mem1) {
            store1(TAG_GRANULE, mem1, tag);
        }
        if (mem2) {
            store1(0, mem2, tag);
        }
    } else {
        /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
                                  2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
        if (mem1) {
            tag |= tag << 4;
            qatomic_set(mem1, tag);
        }
    }
}

void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
    do_st2g(env, ptr, xt, GETPC(), store_tag1);
}

void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
    do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
}

void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
{
    int mmu_idx = cpu_mmu_index(env, false);
    uintptr_t ra = GETPC();
    int in_page = -(ptr | TARGET_PAGE_MASK);

    check_tag_aligned(env, ptr, ra);

    if (likely(in_page >= 2 * TAG_GRANULE)) {
        probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
    } else {
        probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
        probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
    }
}

#define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)

uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
{
    int mmu_idx = cpu_mmu_index(env, false);
    uintptr_t ra = GETPC();
    void *tag_mem;

    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);

    /* Trap if accessing an invalid page.  */
    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);

    /* The tag is squashed to zero if the page does not support tags.  */
    if (!tag_mem) {
        return 0;
    }

    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
    /*
     * We are loading 64-bits worth of tags.  The ordering of elements
     * within the word corresponds to a 64-bit little-endian operation.
     */
    return ldq_le_p(tag_mem);
}

void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
{
    int mmu_idx = cpu_mmu_index(env, false);
    uintptr_t ra = GETPC();
    void *tag_mem;

    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);

    /* Trap if accessing an invalid page.  */
    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);

    /*
     * Tag store only happens if the page support tags,
     * and if the OS has enabled access to the tags.
     */
    if (!tag_mem) {
        return;
    }

    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
    /*
     * We are storing 64-bits worth of tags.  The ordering of elements
     * within the word corresponds to a 64-bit little-endian operation.
     */
    stq_le_p(tag_mem, val);
}

void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
{
    uintptr_t ra = GETPC();
    int mmu_idx = cpu_mmu_index(env, false);
    int log2_dcz_bytes, log2_tag_bytes;
    intptr_t dcz_bytes, tag_bytes;
    uint8_t *mem;

    /*
     * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
     * i.e. 32 bytes, which is an unreasonably small dcz anyway,
     * to make sure that we can access one complete tag byte here.
     */
    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
    tag_bytes = (intptr_t)1 << log2_tag_bytes;
    ptr &= -dcz_bytes;

    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
                             MMU_DATA_STORE, tag_bytes, ra);
    if (mem) {
        int tag_pair = (val & 0xf) * 0x11;
        memset(mem, tag_pair, tag_bytes);
    }
}

static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
                                uint64_t dirty_ptr, uintptr_t ra)
{
    int is_write, syn;

    env->exception.vaddress = dirty_ptr;

    is_write = FIELD_EX32(desc, MTEDESC, WRITE);
    syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
                                0x11);
    raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
    g_assert_not_reached();
}

static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
                                 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
{
    int select;

    if (regime_has_2_ranges(arm_mmu_idx)) {
        select = extract64(dirty_ptr, 55, 1);
    } else {
        select = 0;
    }
    env->cp15.tfsr_el[el] |= 1 << select;
#ifdef CONFIG_USER_ONLY
    /*
     * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
     * which then sends a SIGSEGV when the thread is next scheduled.
     * This cpu will return to the main loop at the end of the TB,
     * which is rather sooner than "normal".  But the alternative
     * is waiting until the next syscall.
     */
    qemu_cpu_kick(env_cpu(env));
#endif
}

/* Record a tag check failure.  */
static void mte_check_fail(CPUARMState *env, uint32_t desc,
                           uint64_t dirty_ptr, uintptr_t ra)
{
    int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
    ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
    int el, reg_el, tcf;
    uint64_t sctlr;

    reg_el = regime_el(env, arm_mmu_idx);
    sctlr = env->cp15.sctlr_el[reg_el];

    switch (arm_mmu_idx) {
    case ARMMMUIdx_E10_0:
    case ARMMMUIdx_E20_0:
        el = 0;
        tcf = extract64(sctlr, 38, 2);
        break;
    default:
        el = reg_el;
        tcf = extract64(sctlr, 40, 2);
    }

    switch (tcf) {
    case 1:
        /* Tag check fail causes a synchronous exception. */
        mte_sync_check_fail(env, desc, dirty_ptr, ra);
        break;

    case 0:
        /*
         * Tag check fail does not affect the PE.
         * We eliminate this case by not setting MTE_ACTIVE
         * in tb_flags, so that we never make this runtime call.
         */
        g_assert_not_reached();

    case 2:
        /* Tag check fail causes asynchronous flag set.  */
        mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
        break;

    case 3:
        /*
         * Tag check fail causes asynchronous flag set for stores, or
         * a synchronous exception for loads.
         */
        if (FIELD_EX32(desc, MTEDESC, WRITE)) {
            mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
        } else {
            mte_sync_check_fail(env, desc, dirty_ptr, ra);
        }
        break;
    }
}

/**
 * checkN:
 * @tag: tag memory to test
 * @odd: true to begin testing at tags at odd nibble
 * @cmp: the tag to compare against
 * @count: number of tags to test
 *
 * Return the number of successful tests.
 * Thus a return value < @count indicates a failure.
 *
 * A note about sizes: count is expected to be small.
 *
 * The most common use will be LDP/STP of two integer registers,
 * which means 16 bytes of memory touching at most 2 tags, but
 * often the access is aligned and thus just 1 tag.
 *
 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
 * touching at most 5 tags.  SVE LDR/STR (vector) with the default
 * vector length is also 64 bytes; the maximum architectural length
 * is 256 bytes touching at most 9 tags.
 *
 * The loop below uses 7 logical operations and 1 memory operation
 * per tag pair.  An implementation that loads an aligned word and
 * uses masking to ignore adjacent tags requires 18 logical operations
 * and thus does not begin to pay off until 6 tags.
 * Which, according to the survey above, is unlikely to be common.
 */
static int checkN(uint8_t *mem, int odd, int cmp, int count)
{
    int n = 0, diff;

    /* Replicate the test tag and compare.  */
    cmp *= 0x11;
    diff = *mem++ ^ cmp;

    if (odd) {
        goto start_odd;
    }

    while (1) {
        /* Test even tag. */
        if (unlikely((diff) & 0x0f)) {
            break;
        }
        if (++n == count) {
            break;
        }

    start_odd:
        /* Test odd tag. */
        if (unlikely((diff) & 0xf0)) {
            break;
        }
        if (++n == count) {
            break;
        }

        diff = *mem++ ^ cmp;
    }
    return n;
}

/**
 * mte_probe_int() - helper for mte_probe and mte_check
 * @env: CPU environment
 * @desc: MTEDESC descriptor
 * @ptr: virtual address of the base of the access
 * @fault: return virtual address of the first check failure
 *
 * Internal routine for both mte_probe and mte_check.
 * Return zero on failure, filling in *fault.
 * Return negative on trivial success for tbi disabled.
 * Return positive on success with tbi enabled.
 */
static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
                         uintptr_t ra, uint64_t *fault)
{
    int mmu_idx, ptr_tag, bit55;
    uint64_t ptr_last, prev_page, next_page;
    uint64_t tag_first, tag_last;
    uint64_t tag_byte_first, tag_byte_last;
    uint32_t sizem1, tag_count, tag_size, n, c;
    uint8_t *mem1, *mem2;
    MMUAccessType type;

    bit55 = extract64(ptr, 55, 1);
    *fault = ptr;

    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
    if (unlikely(!tbi_check(desc, bit55))) {
        return -1;
    }

    ptr_tag = allocation_tag_from_addr(ptr);

    if (tcma_check(desc, bit55, ptr_tag)) {
        return 1;
    }

    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
    type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
    sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);

    /* Find the addr of the end of the access */
    ptr_last = ptr + sizem1;

    /* Round the bounds to the tag granule, and compute the number of tags. */
    tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
    tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
    tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;

    /* Round the bounds to twice the tag granule, and compute the bytes. */
    tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
    tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);

    /* Locate the page boundaries. */
    prev_page = ptr & TARGET_PAGE_MASK;
    next_page = prev_page + TARGET_PAGE_SIZE;

    if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
        /* Memory access stays on one page. */
        tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
                                  MMU_DATA_LOAD, tag_size, ra);
        if (!mem1) {
            return 1;
        }
        /* Perform all of the comparisons. */
        n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
    } else {
        /* Memory access crosses to next page. */
        tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
                                  MMU_DATA_LOAD, tag_size, ra);

        tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
        mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
                                  ptr_last - next_page + 1,
                                  MMU_DATA_LOAD, tag_size, ra);

        /*
         * Perform all of the comparisons.
         * Note the possible but unlikely case of the operation spanning
         * two pages that do not both have tagging enabled.
         */
        n = c = (next_page - tag_first) / TAG_GRANULE;
        if (mem1) {
            n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
        }
        if (n == c) {
            if (!mem2) {
                return 1;
            }
            n += checkN(mem2, 0, ptr_tag, tag_count - c);
        }
    }

    if (likely(n == tag_count)) {
        return 1;
    }

    /*
     * If we failed, we know which granule.  For the first granule, the
     * failure address is @ptr, the first byte accessed.  Otherwise the
     * failure address is the first byte of the nth granule.
     */
    if (n > 0) {
        *fault = tag_first + n * TAG_GRANULE;
    }
    return 0;
}

uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
{
    uint64_t fault;
    int ret = mte_probe_int(env, desc, ptr, ra, &fault);

    if (unlikely(ret == 0)) {
        mte_check_fail(env, desc, fault, ra);
    } else if (ret < 0) {
        return ptr;
    }
    return useronly_clean_ptr(ptr);
}

uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
{
    return mte_check(env, desc, ptr, GETPC());
}

/*
 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
 * Returns false if the access is Checked and the check failed.  This
 * is only intended to probe the tag -- the validity of the page must
 * be checked beforehand.
 */
bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
{
    uint64_t fault;
    int ret = mte_probe_int(env, desc, ptr, 0, &fault);

    return ret != 0;
}

/*
 * Perform an MTE checked access for DC_ZVA.
 */
uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
{
    uintptr_t ra = GETPC();
    int log2_dcz_bytes, log2_tag_bytes;
    int mmu_idx, bit55;
    intptr_t dcz_bytes, tag_bytes, i;
    void *mem;
    uint64_t ptr_tag, mem_tag, align_ptr;

    bit55 = extract64(ptr, 55, 1);

    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
    if (unlikely(!tbi_check(desc, bit55))) {
        return ptr;
    }

    ptr_tag = allocation_tag_from_addr(ptr);

    if (tcma_check(desc, bit55, ptr_tag)) {
        goto done;
    }

    /*
     * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
     * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
     * sure that we can access one complete tag byte here.
     */
    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
    tag_bytes = (intptr_t)1 << log2_tag_bytes;
    align_ptr = ptr & -dcz_bytes;

    /*
     * Trap if accessing an invalid page.  DC_ZVA requires that we supply
     * the original pointer for an invalid page.  But watchpoints require
     * that we probe the actual space.  So do both.
     */
    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
    (void) probe_write(env, ptr, 1, mmu_idx, ra);
    mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
                             dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
    if (!mem) {
        goto done;
    }

    /*
     * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
     * it is quite easy to perform all of the comparisons at once without
     * any extra masking.
     *
     * The most common zva block size is 64; some of the thunderx cpus use
     * a block size of 128.  For user-only, aarch64_max_initfn will set the
     * block size to 512.  Fill out the other cases for future-proofing.
     *
     * In order to be able to find the first miscompare later, we want the
     * tag bytes to be in little-endian order.
     */
    switch (log2_tag_bytes) {
    case 0: /* zva_blocksize 32 */
        mem_tag = *(uint8_t *)mem;
        ptr_tag *= 0x11u;
        break;
    case 1: /* zva_blocksize 64 */
        mem_tag = cpu_to_le16(*(uint16_t *)mem);
        ptr_tag *= 0x1111u;
        break;
    case 2: /* zva_blocksize 128 */
        mem_tag = cpu_to_le32(*(uint32_t *)mem);
        ptr_tag *= 0x11111111u;
        break;
    case 3: /* zva_blocksize 256 */
        mem_tag = cpu_to_le64(*(uint64_t *)mem);
        ptr_tag *= 0x1111111111111111ull;
        break;

    default: /* zva_blocksize 512, 1024, 2048 */
        ptr_tag *= 0x1111111111111111ull;
        i = 0;
        do {
            mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
            if (unlikely(mem_tag != ptr_tag)) {
                goto fail;
            }
            i += 8;
            align_ptr += 16 * TAG_GRANULE;
        } while (i < tag_bytes);
        goto done;
    }

    if (likely(mem_tag == ptr_tag)) {
        goto done;
    }

 fail:
    /* Locate the first nibble that differs. */
    i = ctz64(mem_tag ^ ptr_tag) >> 4;
    mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);

 done:
    return useronly_clean_ptr(ptr);
}