aboutsummaryrefslogtreecommitdiff
path: root/target/arm/kvm.c
blob: 4339e1cd6e08a9dd372f587ec79808875a0cb056 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
/*
 * ARM implementation of KVM hooks
 *
 * Copyright Christoffer Dall 2009-2010
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include <sys/ioctl.h>

#include <linux/kvm.h>

#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qom/object.h"
#include "qapi/error.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
#include "cpu.h"
#include "trace.h"
#include "internals.h"
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "qemu/log.h"

const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

static bool cap_has_mp_state;
static bool cap_has_inject_serror_esr;
static bool cap_has_inject_ext_dabt;

static ARMHostCPUFeatures arm_host_cpu_features;

int kvm_arm_vcpu_init(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    struct kvm_vcpu_init init;

    init.target = cpu->kvm_target;
    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));

    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
}

int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
{
    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
}

void kvm_arm_init_serror_injection(CPUState *cs)
{
    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
}

bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
                                      int *fdarray,
                                      struct kvm_vcpu_init *init)
{
    int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
    int max_vm_pa_size;

    kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
    if (kvmfd < 0) {
        goto err;
    }
    max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
    if (max_vm_pa_size < 0) {
        max_vm_pa_size = 0;
    }
    vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
    if (vmfd < 0) {
        goto err;
    }
    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
    if (cpufd < 0) {
        goto err;
    }

    if (!init) {
        /* Caller doesn't want the VCPU to be initialized, so skip it */
        goto finish;
    }

    if (init->target == -1) {
        struct kvm_vcpu_init preferred;

        ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
        if (!ret) {
            init->target = preferred.target;
        }
    }
    if (ret >= 0) {
        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
        if (ret < 0) {
            goto err;
        }
    } else if (cpus_to_try) {
        /* Old kernel which doesn't know about the
         * PREFERRED_TARGET ioctl: we know it will only support
         * creating one kind of guest CPU which is its preferred
         * CPU type.
         */
        struct kvm_vcpu_init try;

        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
            try.target = *cpus_to_try++;
            memcpy(try.features, init->features, sizeof(init->features));
            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
            if (ret >= 0) {
                break;
            }
        }
        if (ret < 0) {
            goto err;
        }
        init->target = try.target;
    } else {
        /* Treat a NULL cpus_to_try argument the same as an empty
         * list, which means we will fail the call since this must
         * be an old kernel which doesn't support PREFERRED_TARGET.
         */
        goto err;
    }

finish:
    fdarray[0] = kvmfd;
    fdarray[1] = vmfd;
    fdarray[2] = cpufd;

    return true;

err:
    if (cpufd >= 0) {
        close(cpufd);
    }
    if (vmfd >= 0) {
        close(vmfd);
    }
    if (kvmfd >= 0) {
        close(kvmfd);
    }

    return false;
}

void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
{
    int i;

    for (i = 2; i >= 0; i--) {
        close(fdarray[i]);
    }
}

void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;

    if (!arm_host_cpu_features.dtb_compatible) {
        if (!kvm_enabled() ||
            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
            /* We can't report this error yet, so flag that we need to
             * in arm_cpu_realizefn().
             */
            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
            cpu->host_cpu_probe_failed = true;
            return;
        }
    }

    cpu->kvm_target = arm_host_cpu_features.target;
    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
    cpu->isar = arm_host_cpu_features.isar;
    env->features = arm_host_cpu_features.features;
}

static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
{
    return !ARM_CPU(obj)->kvm_adjvtime;
}

static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
{
    ARM_CPU(obj)->kvm_adjvtime = !value;
}

static bool kvm_steal_time_get(Object *obj, Error **errp)
{
    return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
}

static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
{
    ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
}

/* KVM VCPU properties should be prefixed with "kvm-". */
void kvm_arm_add_vcpu_properties(Object *obj)
{
    ARMCPU *cpu = ARM_CPU(obj);
    CPUARMState *env = &cpu->env;

    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        cpu->kvm_adjvtime = true;
        object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
                                 kvm_no_adjvtime_set);
        object_property_set_description(obj, "kvm-no-adjvtime",
                                        "Set on to disable the adjustment of "
                                        "the virtual counter. VM stopped time "
                                        "will be counted.");
    }

    cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
    object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
                             kvm_steal_time_set);
    object_property_set_description(obj, "kvm-steal-time",
                                    "Set off to disable KVM steal time.");
}

bool kvm_arm_pmu_supported(void)
{
    return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
}

int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
{
    KVMState *s = KVM_STATE(ms->accelerator);
    int ret;

    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
    *fixed_ipa = ret <= 0;

    return ret > 0 ? ret : 40;
}

int kvm_arch_init(MachineState *ms, KVMState *s)
{
    int ret = 0;
    /* For ARM interrupt delivery is always asynchronous,
     * whether we are using an in-kernel VGIC or not.
     */
    kvm_async_interrupts_allowed = true;

    /*
     * PSCI wakes up secondary cores, so we always need to
     * have vCPUs waiting in kernel space
     */
    kvm_halt_in_kernel_allowed = true;

    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);

    if (ms->smp.cpus > 256 &&
        !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
        error_report("Using more than 256 vcpus requires a host kernel "
                     "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
        ret = -EINVAL;
    }

    if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
        if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
            error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
        } else {
            /* Set status for supporting the external dabt injection */
            cap_has_inject_ext_dabt = kvm_check_extension(s,
                                    KVM_CAP_ARM_INJECT_EXT_DABT);
        }
    }

    return ret;
}

unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
    return cpu->cpu_index;
}

/* We track all the KVM devices which need their memory addresses
 * passing to the kernel in a list of these structures.
 * When board init is complete we run through the list and
 * tell the kernel the base addresses of the memory regions.
 * We use a MemoryListener to track mapping and unmapping of
 * the regions during board creation, so the board models don't
 * need to do anything special for the KVM case.
 *
 * Sometimes the address must be OR'ed with some other fields
 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 * @kda_addr_ormask aims at storing the value of those fields.
 */
typedef struct KVMDevice {
    struct kvm_arm_device_addr kda;
    struct kvm_device_attr kdattr;
    uint64_t kda_addr_ormask;
    MemoryRegion *mr;
    QSLIST_ENTRY(KVMDevice) entries;
    int dev_fd;
} KVMDevice;

static QSLIST_HEAD(, KVMDevice) kvm_devices_head;

static void kvm_arm_devlistener_add(MemoryListener *listener,
                                    MemoryRegionSection *section)
{
    KVMDevice *kd;

    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
        if (section->mr == kd->mr) {
            kd->kda.addr = section->offset_within_address_space;
        }
    }
}

static void kvm_arm_devlistener_del(MemoryListener *listener,
                                    MemoryRegionSection *section)
{
    KVMDevice *kd;

    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
        if (section->mr == kd->mr) {
            kd->kda.addr = -1;
        }
    }
}

static MemoryListener devlistener = {
    .name = "kvm-arm",
    .region_add = kvm_arm_devlistener_add,
    .region_del = kvm_arm_devlistener_del,
};

static void kvm_arm_set_device_addr(KVMDevice *kd)
{
    struct kvm_device_attr *attr = &kd->kdattr;
    int ret;

    /* If the device control API is available and we have a device fd on the
     * KVMDevice struct, let's use the newer API
     */
    if (kd->dev_fd >= 0) {
        uint64_t addr = kd->kda.addr;

        addr |= kd->kda_addr_ormask;
        attr->addr = (uintptr_t)&addr;
        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
    } else {
        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
    }

    if (ret < 0) {
        fprintf(stderr, "Failed to set device address: %s\n",
                strerror(-ret));
        abort();
    }
}

static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
{
    KVMDevice *kd, *tkd;

    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
        if (kd->kda.addr != -1) {
            kvm_arm_set_device_addr(kd);
        }
        memory_region_unref(kd->mr);
        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
        g_free(kd);
    }
    memory_listener_unregister(&devlistener);
}

static Notifier notify = {
    .notify = kvm_arm_machine_init_done,
};

void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
{
    KVMDevice *kd;

    if (!kvm_irqchip_in_kernel()) {
        return;
    }

    if (QSLIST_EMPTY(&kvm_devices_head)) {
        memory_listener_register(&devlistener, &address_space_memory);
        qemu_add_machine_init_done_notifier(&notify);
    }
    kd = g_new0(KVMDevice, 1);
    kd->mr = mr;
    kd->kda.id = devid;
    kd->kda.addr = -1;
    kd->kdattr.flags = 0;
    kd->kdattr.group = group;
    kd->kdattr.attr = attr;
    kd->dev_fd = dev_fd;
    kd->kda_addr_ormask = addr_ormask;
    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
    memory_region_ref(kd->mr);
}

static int compare_u64(const void *a, const void *b)
{
    if (*(uint64_t *)a > *(uint64_t *)b) {
        return 1;
    }
    if (*(uint64_t *)a < *(uint64_t *)b) {
        return -1;
    }
    return 0;
}

/*
 * cpreg_values are sorted in ascending order by KVM register ID
 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
 * the storage for a KVM register by ID with a binary search.
 */
static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
{
    uint64_t *res;

    res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
                  sizeof(uint64_t), compare_u64);
    assert(res);

    return &cpu->cpreg_values[res - cpu->cpreg_indexes];
}

/* Initialize the ARMCPU cpreg list according to the kernel's
 * definition of what CPU registers it knows about (and throw away
 * the previous TCG-created cpreg list).
 */
int kvm_arm_init_cpreg_list(ARMCPU *cpu)
{
    struct kvm_reg_list rl;
    struct kvm_reg_list *rlp;
    int i, ret, arraylen;
    CPUState *cs = CPU(cpu);

    rl.n = 0;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
    if (ret != -E2BIG) {
        return ret;
    }
    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
    rlp->n = rl.n;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
    if (ret) {
        goto out;
    }
    /* Sort the list we get back from the kernel, since cpreg_tuples
     * must be in strictly ascending order.
     */
    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);

    for (i = 0, arraylen = 0; i < rlp->n; i++) {
        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
            continue;
        }
        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
        case KVM_REG_SIZE_U64:
            break;
        default:
            fprintf(stderr, "Can't handle size of register in kernel list\n");
            ret = -EINVAL;
            goto out;
        }

        arraylen++;
    }

    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
                                         arraylen);
    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
                                        arraylen);
    cpu->cpreg_array_len = arraylen;
    cpu->cpreg_vmstate_array_len = arraylen;

    for (i = 0, arraylen = 0; i < rlp->n; i++) {
        uint64_t regidx = rlp->reg[i];
        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
            continue;
        }
        cpu->cpreg_indexes[arraylen] = regidx;
        arraylen++;
    }
    assert(cpu->cpreg_array_len == arraylen);

    if (!write_kvmstate_to_list(cpu)) {
        /* Shouldn't happen unless kernel is inconsistent about
         * what registers exist.
         */
        fprintf(stderr, "Initial read of kernel register state failed\n");
        ret = -EINVAL;
        goto out;
    }

out:
    g_free(rlp);
    return ret;
}

bool write_kvmstate_to_list(ARMCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        struct kvm_one_reg r;
        uint64_t regidx = cpu->cpreg_indexes[i];
        uint32_t v32;
        int ret;

        r.id = regidx;

        switch (regidx & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            r.addr = (uintptr_t)&v32;
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
            if (!ret) {
                cpu->cpreg_values[i] = v32;
            }
            break;
        case KVM_REG_SIZE_U64:
            r.addr = (uintptr_t)(cpu->cpreg_values + i);
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
            break;
        default:
            g_assert_not_reached();
        }
        if (ret) {
            ok = false;
        }
    }
    return ok;
}

bool write_list_to_kvmstate(ARMCPU *cpu, int level)
{
    CPUState *cs = CPU(cpu);
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        struct kvm_one_reg r;
        uint64_t regidx = cpu->cpreg_indexes[i];
        uint32_t v32;
        int ret;

        if (kvm_arm_cpreg_level(regidx) > level) {
            continue;
        }

        r.id = regidx;
        switch (regidx & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            v32 = cpu->cpreg_values[i];
            r.addr = (uintptr_t)&v32;
            break;
        case KVM_REG_SIZE_U64:
            r.addr = (uintptr_t)(cpu->cpreg_values + i);
            break;
        default:
            g_assert_not_reached();
        }
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            /* We might fail for "unknown register" and also for
             * "you tried to set a register which is constant with
             * a different value from what it actually contains".
             */
            ok = false;
        }
    }
    return ok;
}

void kvm_arm_cpu_pre_save(ARMCPU *cpu)
{
    /* KVM virtual time adjustment */
    if (cpu->kvm_vtime_dirty) {
        *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
    }
}

void kvm_arm_cpu_post_load(ARMCPU *cpu)
{
    /* KVM virtual time adjustment */
    if (cpu->kvm_adjvtime) {
        cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
        cpu->kvm_vtime_dirty = true;
    }
}

void kvm_arm_reset_vcpu(ARMCPU *cpu)
{
    int ret;

    /* Re-init VCPU so that all registers are set to
     * their respective reset values.
     */
    ret = kvm_arm_vcpu_init(CPU(cpu));
    if (ret < 0) {
        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
        abort();
    }
    if (!write_kvmstate_to_list(cpu)) {
        fprintf(stderr, "write_kvmstate_to_list failed\n");
        abort();
    }
    /*
     * Sync the reset values also into the CPUState. This is necessary
     * because the next thing we do will be a kvm_arch_put_registers()
     * which will update the list values from the CPUState before copying
     * the list values back to KVM. It's OK to ignore failure returns here
     * for the same reason we do so in kvm_arch_get_registers().
     */
    write_list_to_cpustate(cpu);
}

/*
 * Update KVM's MP_STATE based on what QEMU thinks it is
 */
int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
{
    if (cap_has_mp_state) {
        struct kvm_mp_state mp_state = {
            .mp_state = (cpu->power_state == PSCI_OFF) ?
            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
        };
        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
        if (ret) {
            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
                    __func__, ret, strerror(-ret));
            return -1;
        }
    }

    return 0;
}

/*
 * Sync the KVM MP_STATE into QEMU
 */
int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
{
    if (cap_has_mp_state) {
        struct kvm_mp_state mp_state;
        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
        if (ret) {
            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
                    __func__, ret, strerror(-ret));
            abort();
        }
        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
            PSCI_OFF : PSCI_ON;
    }

    return 0;
}

void kvm_arm_get_virtual_time(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    struct kvm_one_reg reg = {
        .id = KVM_REG_ARM_TIMER_CNT,
        .addr = (uintptr_t)&cpu->kvm_vtime,
    };
    int ret;

    if (cpu->kvm_vtime_dirty) {
        return;
    }

    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
        abort();
    }

    cpu->kvm_vtime_dirty = true;
}

void kvm_arm_put_virtual_time(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    struct kvm_one_reg reg = {
        .id = KVM_REG_ARM_TIMER_CNT,
        .addr = (uintptr_t)&cpu->kvm_vtime,
    };
    int ret;

    if (!cpu->kvm_vtime_dirty) {
        return;
    }

    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
        abort();
    }

    cpu->kvm_vtime_dirty = false;
}

int kvm_put_vcpu_events(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    struct kvm_vcpu_events events;
    int ret;

    if (!kvm_has_vcpu_events()) {
        return 0;
    }

    memset(&events, 0, sizeof(events));
    events.exception.serror_pending = env->serror.pending;

    /* Inject SError to guest with specified syndrome if host kernel
     * supports it, otherwise inject SError without syndrome.
     */
    if (cap_has_inject_serror_esr) {
        events.exception.serror_has_esr = env->serror.has_esr;
        events.exception.serror_esr = env->serror.esr;
    }

    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
    if (ret) {
        error_report("failed to put vcpu events");
    }

    return ret;
}

int kvm_get_vcpu_events(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    struct kvm_vcpu_events events;
    int ret;

    if (!kvm_has_vcpu_events()) {
        return 0;
    }

    memset(&events, 0, sizeof(events));
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
    if (ret) {
        error_report("failed to get vcpu events");
        return ret;
    }

    env->serror.pending = events.exception.serror_pending;
    env->serror.has_esr = events.exception.serror_has_esr;
    env->serror.esr = events.exception.serror_esr;

    return 0;
}

void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    if (unlikely(env->ext_dabt_raised)) {
        /*
         * Verifying that the ext DABT has been properly injected,
         * otherwise risking indefinitely re-running the faulting instruction
         * Covering a very narrow case for kernels 5.5..5.5.4
         * when injected abort was misconfigured to be
         * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
         */
        if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
            unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {

            error_report("Data abort exception with no valid ISS generated by "
                   "guest memory access. KVM unable to emulate faulting "
                   "instruction. Failed to inject an external data abort "
                   "into the guest.");
            abort();
       }
       /* Clear the status */
       env->ext_dabt_raised = 0;
    }
}

MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
    ARMCPU *cpu;
    uint32_t switched_level;

    if (kvm_irqchip_in_kernel()) {
        /*
         * We only need to sync timer states with user-space interrupt
         * controllers, so return early and save cycles if we don't.
         */
        return MEMTXATTRS_UNSPECIFIED;
    }

    cpu = ARM_CPU(cs);

    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;

        qemu_mutex_lock_iothread();

        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
                         !!(run->s.regs.device_irq_level &
                            KVM_ARM_DEV_EL1_VTIMER));
            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
        }

        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
                         !!(run->s.regs.device_irq_level &
                            KVM_ARM_DEV_EL1_PTIMER));
            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
        }

        if (switched_level & KVM_ARM_DEV_PMU) {
            qemu_set_irq(cpu->pmu_interrupt,
                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
            switched_level &= ~KVM_ARM_DEV_PMU;
        }

        if (switched_level) {
            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
                          __func__, switched_level);
        }

        /* We also mark unknown levels as processed to not waste cycles */
        cpu->device_irq_level = run->s.regs.device_irq_level;
        qemu_mutex_unlock_iothread();
    }

    return MEMTXATTRS_UNSPECIFIED;
}

void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
{
    CPUState *cs = opaque;
    ARMCPU *cpu = ARM_CPU(cs);

    if (running) {
        if (cpu->kvm_adjvtime) {
            kvm_arm_put_virtual_time(cs);
        }
    } else {
        if (cpu->kvm_adjvtime) {
            kvm_arm_get_virtual_time(cs);
        }
    }
}

/**
 * kvm_arm_handle_dabt_nisv:
 * @cs: CPUState
 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
 *           ISV bit set to '0b0' -> no valid instruction syndrome
 * @fault_ipa: faulting address for the synchronous data abort
 *
 * Returns: 0 if the exception has been handled, < 0 otherwise
 */
static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
                                    uint64_t fault_ipa)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    /*
     * Request KVM to inject the external data abort into the guest
     */
    if (cap_has_inject_ext_dabt) {
        struct kvm_vcpu_events events = { };
        /*
         * The external data abort event will be handled immediately by KVM
         * using the address fault that triggered the exit on given VCPU.
         * Requesting injection of the external data abort does not rely
         * on any other VCPU state. Therefore, in this particular case, the VCPU
         * synchronization can be exceptionally skipped.
         */
        events.exception.ext_dabt_pending = 1;
        /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
        if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
            env->ext_dabt_raised = 1;
            return 0;
        }
    } else {
        error_report("Data abort exception triggered by guest memory access "
                     "at physical address: 0x"  TARGET_FMT_lx,
                     (target_ulong)fault_ipa);
        error_printf("KVM unable to emulate faulting instruction.\n");
    }
    return -1;
}

int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
    int ret = 0;

    switch (run->exit_reason) {
    case KVM_EXIT_DEBUG:
        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
            ret = EXCP_DEBUG;
        } /* otherwise return to guest */
        break;
    case KVM_EXIT_ARM_NISV:
        /* External DABT with no valid iss to decode */
        ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
                                       run->arm_nisv.fault_ipa);
        break;
    default:
        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
                      __func__, run->exit_reason);
        break;
    }
    return ret;
}

bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
    return true;
}

int kvm_arch_process_async_events(CPUState *cs)
{
    return 0;
}

void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
    if (kvm_sw_breakpoints_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    }
    if (kvm_arm_hw_debug_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
        kvm_arm_copy_hw_debug_data(&dbg->arch);
    }
}

void kvm_arch_init_irq_routing(KVMState *s)
{
}

int kvm_arch_irqchip_create(KVMState *s)
{
    if (kvm_kernel_irqchip_split()) {
        perror("-machine kernel_irqchip=split is not supported on ARM.");
        exit(1);
    }

    /* If we can create the VGIC using the newer device control API, we
     * let the device do this when it initializes itself, otherwise we
     * fall back to the old API */
    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
}

int kvm_arm_vgic_probe(void)
{
    int val = 0;

    if (kvm_create_device(kvm_state,
                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
        val |= KVM_ARM_VGIC_V3;
    }
    if (kvm_create_device(kvm_state,
                          KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
        val |= KVM_ARM_VGIC_V2;
    }
    return val;
}

int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
{
    int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
    int cpu_idx1 = cpu % 256;
    int cpu_idx2 = cpu / 256;

    kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
               (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);

    return kvm_set_irq(kvm_state, kvm_irq, !!level);
}

int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
                             uint64_t address, uint32_t data, PCIDevice *dev)
{
    AddressSpace *as = pci_device_iommu_address_space(dev);
    hwaddr xlat, len, doorbell_gpa;
    MemoryRegionSection mrs;
    MemoryRegion *mr;

    if (as == &address_space_memory) {
        return 0;
    }

    /* MSI doorbell address is translated by an IOMMU */

    RCU_READ_LOCK_GUARD();

    mr = address_space_translate(as, address, &xlat, &len, true,
                                 MEMTXATTRS_UNSPECIFIED);

    if (!mr) {
        return 1;
    }

    mrs = memory_region_find(mr, xlat, 1);

    if (!mrs.mr) {
        return 1;
    }

    doorbell_gpa = mrs.offset_within_address_space;
    memory_region_unref(mrs.mr);

    route->u.msi.address_lo = doorbell_gpa;
    route->u.msi.address_hi = doorbell_gpa >> 32;

    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);

    return 0;
}

int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
                                int vector, PCIDevice *dev)
{
    return 0;
}

int kvm_arch_release_virq_post(int virq)
{
    return 0;
}

int kvm_arch_msi_data_to_gsi(uint32_t data)
{
    return (data - 32) & 0xffff;
}

bool kvm_arch_cpu_check_are_resettable(void)
{
    return true;
}