aboutsummaryrefslogtreecommitdiff
path: root/target/arm/kvm.c
blob: fe4f461d4ef617a1257e071e72a442a5e991b64a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
/*
 * ARM implementation of KVM hooks
 *
 * Copyright Christoffer Dall 2009-2010
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include <sys/ioctl.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
#include "cpu.h"
#include "trace.h"
#include "internals.h"
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "qemu/log.h"

const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

static bool cap_has_mp_state;
static bool cap_has_inject_serror_esr;

static ARMHostCPUFeatures arm_host_cpu_features;

int kvm_arm_vcpu_init(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    struct kvm_vcpu_init init;

    init.target = cpu->kvm_target;
    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));

    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
}

void kvm_arm_init_serror_injection(CPUState *cs)
{
    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
}

bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
                                      int *fdarray,
                                      struct kvm_vcpu_init *init)
{
    int ret, kvmfd = -1, vmfd = -1, cpufd = -1;

    kvmfd = qemu_open("/dev/kvm", O_RDWR);
    if (kvmfd < 0) {
        goto err;
    }
    vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
    if (vmfd < 0) {
        goto err;
    }
    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
    if (cpufd < 0) {
        goto err;
    }

    if (!init) {
        /* Caller doesn't want the VCPU to be initialized, so skip it */
        goto finish;
    }

    ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
    if (ret >= 0) {
        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
        if (ret < 0) {
            goto err;
        }
    } else if (cpus_to_try) {
        /* Old kernel which doesn't know about the
         * PREFERRED_TARGET ioctl: we know it will only support
         * creating one kind of guest CPU which is its preferred
         * CPU type.
         */
        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
            init->target = *cpus_to_try++;
            memset(init->features, 0, sizeof(init->features));
            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
            if (ret >= 0) {
                break;
            }
        }
        if (ret < 0) {
            goto err;
        }
    } else {
        /* Treat a NULL cpus_to_try argument the same as an empty
         * list, which means we will fail the call since this must
         * be an old kernel which doesn't support PREFERRED_TARGET.
         */
        goto err;
    }

finish:
    fdarray[0] = kvmfd;
    fdarray[1] = vmfd;
    fdarray[2] = cpufd;

    return true;

err:
    if (cpufd >= 0) {
        close(cpufd);
    }
    if (vmfd >= 0) {
        close(vmfd);
    }
    if (kvmfd >= 0) {
        close(kvmfd);
    }

    return false;
}

void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
{
    int i;

    for (i = 2; i >= 0; i--) {
        close(fdarray[i]);
    }
}

void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;

    if (!arm_host_cpu_features.dtb_compatible) {
        if (!kvm_enabled() ||
            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
            /* We can't report this error yet, so flag that we need to
             * in arm_cpu_realizefn().
             */
            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
            cpu->host_cpu_probe_failed = true;
            return;
        }
    }

    cpu->kvm_target = arm_host_cpu_features.target;
    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
    cpu->isar = arm_host_cpu_features.isar;
    env->features = arm_host_cpu_features.features;
}

int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
{
    KVMState *s = KVM_STATE(ms->accelerator);
    int ret;

    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
    return ret > 0 ? ret : 40;
}

int kvm_arch_init(MachineState *ms, KVMState *s)
{
    /* For ARM interrupt delivery is always asynchronous,
     * whether we are using an in-kernel VGIC or not.
     */
    kvm_async_interrupts_allowed = true;

    /*
     * PSCI wakes up secondary cores, so we always need to
     * have vCPUs waiting in kernel space
     */
    kvm_halt_in_kernel_allowed = true;

    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);

    return 0;
}

unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
    return cpu->cpu_index;
}

/* We track all the KVM devices which need their memory addresses
 * passing to the kernel in a list of these structures.
 * When board init is complete we run through the list and
 * tell the kernel the base addresses of the memory regions.
 * We use a MemoryListener to track mapping and unmapping of
 * the regions during board creation, so the board models don't
 * need to do anything special for the KVM case.
 *
 * Sometimes the address must be OR'ed with some other fields
 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 * @kda_addr_ormask aims at storing the value of those fields.
 */
typedef struct KVMDevice {
    struct kvm_arm_device_addr kda;
    struct kvm_device_attr kdattr;
    uint64_t kda_addr_ormask;
    MemoryRegion *mr;
    QSLIST_ENTRY(KVMDevice) entries;
    int dev_fd;
} KVMDevice;

static QSLIST_HEAD(, KVMDevice) kvm_devices_head;

static void kvm_arm_devlistener_add(MemoryListener *listener,
                                    MemoryRegionSection *section)
{
    KVMDevice *kd;

    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
        if (section->mr == kd->mr) {
            kd->kda.addr = section->offset_within_address_space;
        }
    }
}

static void kvm_arm_devlistener_del(MemoryListener *listener,
                                    MemoryRegionSection *section)
{
    KVMDevice *kd;

    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
        if (section->mr == kd->mr) {
            kd->kda.addr = -1;
        }
    }
}

static MemoryListener devlistener = {
    .region_add = kvm_arm_devlistener_add,
    .region_del = kvm_arm_devlistener_del,
};

static void kvm_arm_set_device_addr(KVMDevice *kd)
{
    struct kvm_device_attr *attr = &kd->kdattr;
    int ret;

    /* If the device control API is available and we have a device fd on the
     * KVMDevice struct, let's use the newer API
     */
    if (kd->dev_fd >= 0) {
        uint64_t addr = kd->kda.addr;

        addr |= kd->kda_addr_ormask;
        attr->addr = (uintptr_t)&addr;
        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
    } else {
        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
    }

    if (ret < 0) {
        fprintf(stderr, "Failed to set device address: %s\n",
                strerror(-ret));
        abort();
    }
}

static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
{
    KVMDevice *kd, *tkd;

    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
        if (kd->kda.addr != -1) {
            kvm_arm_set_device_addr(kd);
        }
        memory_region_unref(kd->mr);
        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
        g_free(kd);
    }
    memory_listener_unregister(&devlistener);
}

static Notifier notify = {
    .notify = kvm_arm_machine_init_done,
};

void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
{
    KVMDevice *kd;

    if (!kvm_irqchip_in_kernel()) {
        return;
    }

    if (QSLIST_EMPTY(&kvm_devices_head)) {
        memory_listener_register(&devlistener, &address_space_memory);
        qemu_add_machine_init_done_notifier(&notify);
    }
    kd = g_new0(KVMDevice, 1);
    kd->mr = mr;
    kd->kda.id = devid;
    kd->kda.addr = -1;
    kd->kdattr.flags = 0;
    kd->kdattr.group = group;
    kd->kdattr.attr = attr;
    kd->dev_fd = dev_fd;
    kd->kda_addr_ormask = addr_ormask;
    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
    memory_region_ref(kd->mr);
}

static int compare_u64(const void *a, const void *b)
{
    if (*(uint64_t *)a > *(uint64_t *)b) {
        return 1;
    }
    if (*(uint64_t *)a < *(uint64_t *)b) {
        return -1;
    }
    return 0;
}

/* Initialize the ARMCPU cpreg list according to the kernel's
 * definition of what CPU registers it knows about (and throw away
 * the previous TCG-created cpreg list).
 */
int kvm_arm_init_cpreg_list(ARMCPU *cpu)
{
    struct kvm_reg_list rl;
    struct kvm_reg_list *rlp;
    int i, ret, arraylen;
    CPUState *cs = CPU(cpu);

    rl.n = 0;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
    if (ret != -E2BIG) {
        return ret;
    }
    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
    rlp->n = rl.n;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
    if (ret) {
        goto out;
    }
    /* Sort the list we get back from the kernel, since cpreg_tuples
     * must be in strictly ascending order.
     */
    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);

    for (i = 0, arraylen = 0; i < rlp->n; i++) {
        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
            continue;
        }
        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
        case KVM_REG_SIZE_U64:
            break;
        default:
            fprintf(stderr, "Can't handle size of register in kernel list\n");
            ret = -EINVAL;
            goto out;
        }

        arraylen++;
    }

    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
                                         arraylen);
    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
                                        arraylen);
    cpu->cpreg_array_len = arraylen;
    cpu->cpreg_vmstate_array_len = arraylen;

    for (i = 0, arraylen = 0; i < rlp->n; i++) {
        uint64_t regidx = rlp->reg[i];
        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
            continue;
        }
        cpu->cpreg_indexes[arraylen] = regidx;
        arraylen++;
    }
    assert(cpu->cpreg_array_len == arraylen);

    if (!write_kvmstate_to_list(cpu)) {
        /* Shouldn't happen unless kernel is inconsistent about
         * what registers exist.
         */
        fprintf(stderr, "Initial read of kernel register state failed\n");
        ret = -EINVAL;
        goto out;
    }

out:
    g_free(rlp);
    return ret;
}

bool write_kvmstate_to_list(ARMCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        struct kvm_one_reg r;
        uint64_t regidx = cpu->cpreg_indexes[i];
        uint32_t v32;
        int ret;

        r.id = regidx;

        switch (regidx & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            r.addr = (uintptr_t)&v32;
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
            if (!ret) {
                cpu->cpreg_values[i] = v32;
            }
            break;
        case KVM_REG_SIZE_U64:
            r.addr = (uintptr_t)(cpu->cpreg_values + i);
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
            break;
        default:
            abort();
        }
        if (ret) {
            ok = false;
        }
    }
    return ok;
}

bool write_list_to_kvmstate(ARMCPU *cpu, int level)
{
    CPUState *cs = CPU(cpu);
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        struct kvm_one_reg r;
        uint64_t regidx = cpu->cpreg_indexes[i];
        uint32_t v32;
        int ret;

        if (kvm_arm_cpreg_level(regidx) > level) {
            continue;
        }

        r.id = regidx;
        switch (regidx & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            v32 = cpu->cpreg_values[i];
            r.addr = (uintptr_t)&v32;
            break;
        case KVM_REG_SIZE_U64:
            r.addr = (uintptr_t)(cpu->cpreg_values + i);
            break;
        default:
            abort();
        }
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            /* We might fail for "unknown register" and also for
             * "you tried to set a register which is constant with
             * a different value from what it actually contains".
             */
            ok = false;
        }
    }
    return ok;
}

void kvm_arm_reset_vcpu(ARMCPU *cpu)
{
    int ret;

    /* Re-init VCPU so that all registers are set to
     * their respective reset values.
     */
    ret = kvm_arm_vcpu_init(CPU(cpu));
    if (ret < 0) {
        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
        abort();
    }
    if (!write_kvmstate_to_list(cpu)) {
        fprintf(stderr, "write_kvmstate_to_list failed\n");
        abort();
    }
    /*
     * Sync the reset values also into the CPUState. This is necessary
     * because the next thing we do will be a kvm_arch_put_registers()
     * which will update the list values from the CPUState before copying
     * the list values back to KVM. It's OK to ignore failure returns here
     * for the same reason we do so in kvm_arch_get_registers().
     */
    write_list_to_cpustate(cpu);
}

/*
 * Update KVM's MP_STATE based on what QEMU thinks it is
 */
int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
{
    if (cap_has_mp_state) {
        struct kvm_mp_state mp_state = {
            .mp_state = (cpu->power_state == PSCI_OFF) ?
            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
        };
        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
        if (ret) {
            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
                    __func__, ret, strerror(-ret));
            return -1;
        }
    }

    return 0;
}

/*
 * Sync the KVM MP_STATE into QEMU
 */
int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
{
    if (cap_has_mp_state) {
        struct kvm_mp_state mp_state;
        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
        if (ret) {
            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
                    __func__, ret, strerror(-ret));
            abort();
        }
        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
            PSCI_OFF : PSCI_ON;
    }

    return 0;
}

int kvm_put_vcpu_events(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    struct kvm_vcpu_events events;
    int ret;

    if (!kvm_has_vcpu_events()) {
        return 0;
    }

    memset(&events, 0, sizeof(events));
    events.exception.serror_pending = env->serror.pending;

    /* Inject SError to guest with specified syndrome if host kernel
     * supports it, otherwise inject SError without syndrome.
     */
    if (cap_has_inject_serror_esr) {
        events.exception.serror_has_esr = env->serror.has_esr;
        events.exception.serror_esr = env->serror.esr;
    }

    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
    if (ret) {
        error_report("failed to put vcpu events");
    }

    return ret;
}

int kvm_get_vcpu_events(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    struct kvm_vcpu_events events;
    int ret;

    if (!kvm_has_vcpu_events()) {
        return 0;
    }

    memset(&events, 0, sizeof(events));
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
    if (ret) {
        error_report("failed to get vcpu events");
        return ret;
    }

    env->serror.pending = events.exception.serror_pending;
    env->serror.has_esr = events.exception.serror_has_esr;
    env->serror.esr = events.exception.serror_esr;

    return 0;
}

void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
}

MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
    ARMCPU *cpu;
    uint32_t switched_level;

    if (kvm_irqchip_in_kernel()) {
        /*
         * We only need to sync timer states with user-space interrupt
         * controllers, so return early and save cycles if we don't.
         */
        return MEMTXATTRS_UNSPECIFIED;
    }

    cpu = ARM_CPU(cs);

    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;

        qemu_mutex_lock_iothread();

        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
                         !!(run->s.regs.device_irq_level &
                            KVM_ARM_DEV_EL1_VTIMER));
            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
        }

        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
                         !!(run->s.regs.device_irq_level &
                            KVM_ARM_DEV_EL1_PTIMER));
            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
        }

        if (switched_level & KVM_ARM_DEV_PMU) {
            qemu_set_irq(cpu->pmu_interrupt,
                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
            switched_level &= ~KVM_ARM_DEV_PMU;
        }

        if (switched_level) {
            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
                          __func__, switched_level);
        }

        /* We also mark unknown levels as processed to not waste cycles */
        cpu->device_irq_level = run->s.regs.device_irq_level;
        qemu_mutex_unlock_iothread();
    }

    return MEMTXATTRS_UNSPECIFIED;
}


int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
    int ret = 0;

    switch (run->exit_reason) {
    case KVM_EXIT_DEBUG:
        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
            ret = EXCP_DEBUG;
        } /* otherwise return to guest */
        break;
    default:
        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
                      __func__, run->exit_reason);
        break;
    }
    return ret;
}

bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
    return true;
}

int kvm_arch_process_async_events(CPUState *cs)
{
    return 0;
}

/* The #ifdef protections are until 32bit headers are imported and can
 * be removed once both 32 and 64 bit reach feature parity.
 */
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
#ifdef KVM_GUESTDBG_USE_SW_BP
    if (kvm_sw_breakpoints_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    }
#endif
#ifdef KVM_GUESTDBG_USE_HW
    if (kvm_arm_hw_debug_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
        kvm_arm_copy_hw_debug_data(&dbg->arch);
    }
#endif
}

void kvm_arch_init_irq_routing(KVMState *s)
{
}

int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
{
     if (machine_kernel_irqchip_split(ms)) {
         perror("-machine kernel_irqchip=split is not supported on ARM.");
         exit(1);
    }

    /* If we can create the VGIC using the newer device control API, we
     * let the device do this when it initializes itself, otherwise we
     * fall back to the old API */
    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
}

int kvm_arm_vgic_probe(void)
{
    if (kvm_create_device(kvm_state,
                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
        return 3;
    } else if (kvm_create_device(kvm_state,
                                 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
        return 2;
    } else {
        return 0;
    }
}

int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
                             uint64_t address, uint32_t data, PCIDevice *dev)
{
    AddressSpace *as = pci_device_iommu_address_space(dev);
    hwaddr xlat, len, doorbell_gpa;
    MemoryRegionSection mrs;
    MemoryRegion *mr;
    int ret = 1;

    if (as == &address_space_memory) {
        return 0;
    }

    /* MSI doorbell address is translated by an IOMMU */

    rcu_read_lock();
    mr = address_space_translate(as, address, &xlat, &len, true,
                                 MEMTXATTRS_UNSPECIFIED);
    if (!mr) {
        goto unlock;
    }
    mrs = memory_region_find(mr, xlat, 1);
    if (!mrs.mr) {
        goto unlock;
    }

    doorbell_gpa = mrs.offset_within_address_space;
    memory_region_unref(mrs.mr);

    route->u.msi.address_lo = doorbell_gpa;
    route->u.msi.address_hi = doorbell_gpa >> 32;

    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);

    ret = 0;

unlock:
    rcu_read_unlock();
    return ret;
}

int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
                                int vector, PCIDevice *dev)
{
    return 0;
}

int kvm_arch_release_virq_post(int virq)
{
    return 0;
}

int kvm_arch_msi_data_to_gsi(uint32_t data)
{
    return (data - 32) & 0xffff;
}