aboutsummaryrefslogtreecommitdiff
path: root/target/arm/hvf/hvf.c
blob: 1fdc5eef92bc43bb352491416ae4affaf7bd6b5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
/*
 * QEMU Hypervisor.framework support for Apple Silicon

 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
 * Copyright 2020 Google LLC
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include "qemu/error-report.h"

#include "sysemu/runstate.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/hw_accel.h"
#include "hvf_arm.h"
#include "cpregs.h"

#include <mach/mach_time.h>

#include "exec/address-spaces.h"
#include "hw/irq.h"
#include "qemu/main-loop.h"
#include "sysemu/cpus.h"
#include "arm-powerctl.h"
#include "target/arm/cpu.h"
#include "target/arm/internals.h"
#include "trace/trace-target_arm_hvf.h"
#include "migration/vmstate.h"

#define HVF_SYSREG(crn, crm, op0, op1, op2) \
        ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
#define PL1_WRITE_MASK 0x4

#define SYSREG_OP0_SHIFT      20
#define SYSREG_OP0_MASK       0x3
#define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
#define SYSREG_OP1_SHIFT      14
#define SYSREG_OP1_MASK       0x7
#define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
#define SYSREG_CRN_SHIFT      10
#define SYSREG_CRN_MASK       0xf
#define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
#define SYSREG_CRM_SHIFT      1
#define SYSREG_CRM_MASK       0xf
#define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
#define SYSREG_OP2_SHIFT      17
#define SYSREG_OP2_MASK       0x7
#define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)

#define SYSREG(op0, op1, crn, crm, op2) \
    ((op0 << SYSREG_OP0_SHIFT) | \
     (op1 << SYSREG_OP1_SHIFT) | \
     (crn << SYSREG_CRN_SHIFT) | \
     (crm << SYSREG_CRM_SHIFT) | \
     (op2 << SYSREG_OP2_SHIFT))
#define SYSREG_MASK \
    SYSREG(SYSREG_OP0_MASK, \
           SYSREG_OP1_MASK, \
           SYSREG_CRN_MASK, \
           SYSREG_CRM_MASK, \
           SYSREG_OP2_MASK)
#define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
#define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
#define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
#define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
#define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
#define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
#define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
#define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
#define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
#define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
#define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
#define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
#define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
#define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
#define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
#define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)

#define WFX_IS_WFE (1 << 0)

#define TMR_CTL_ENABLE  (1 << 0)
#define TMR_CTL_IMASK   (1 << 1)
#define TMR_CTL_ISTATUS (1 << 2)

static void hvf_wfi(CPUState *cpu);

typedef struct HVFVTimer {
    /* Vtimer value during migration and paused state */
    uint64_t vtimer_val;
} HVFVTimer;

static HVFVTimer vtimer;

typedef struct ARMHostCPUFeatures {
    ARMISARegisters isar;
    uint64_t features;
    uint64_t midr;
    uint32_t reset_sctlr;
    const char *dtb_compatible;
} ARMHostCPUFeatures;

static ARMHostCPUFeatures arm_host_cpu_features;

struct hvf_reg_match {
    int reg;
    uint64_t offset;
};

static const struct hvf_reg_match hvf_reg_match[] = {
    { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
    { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
    { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
    { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
    { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
    { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
    { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
    { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
    { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
    { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
    { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
    { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
    { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
    { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
    { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
    { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
    { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
    { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
    { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
    { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
    { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
    { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
    { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
    { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
    { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
    { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
    { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
    { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
    { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
    { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
    { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
    { HV_REG_PC,   offsetof(CPUARMState, pc) },
};

static const struct hvf_reg_match hvf_fpreg_match[] = {
    { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
    { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
    { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
    { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
    { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
    { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
    { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
    { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
    { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
    { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
    { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
    { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
    { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
    { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
    { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
    { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
    { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
    { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
    { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
    { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
    { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
    { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
    { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
    { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
    { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
    { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
    { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
    { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
    { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
    { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
    { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
    { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
};

struct hvf_sreg_match {
    int reg;
    uint32_t key;
    uint32_t cp_idx;
};

static struct hvf_sreg_match hvf_sreg_match[] = {
    { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },

#ifdef SYNC_NO_RAW_REGS
    /*
     * The registers below are manually synced on init because they are
     * marked as NO_RAW. We still list them to make number space sync easier.
     */
    { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
    { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
    { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
    { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
#endif
    { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
    { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
    { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
    { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
    { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
#ifdef SYNC_NO_MMFR0
    /* We keep the hardware MMFR0 around. HW limits are there anyway */
    { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
#endif
    { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
    { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },

    { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
    { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
    { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
    { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
    { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
    { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },

    { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
    { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
    { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
    { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
    { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
    { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
    { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
    { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
    { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
    { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },

    { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
    { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
    { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
    { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
    { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
    { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
    { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
    { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
    { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
    { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
    { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
    { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
    { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
    { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
    { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
    { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
    { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
    { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
    { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
    { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
};

int hvf_get_registers(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    hv_return_t ret;
    uint64_t val;
    hv_simd_fp_uchar16_t fpval;
    int i;

    for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
        ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
        *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
        assert_hvf_ok(ret);
    }

    for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
        ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
                                      &fpval);
        memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
        assert_hvf_ok(ret);
    }

    val = 0;
    ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
    assert_hvf_ok(ret);
    vfp_set_fpcr(env, val);

    val = 0;
    ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
    assert_hvf_ok(ret);
    vfp_set_fpsr(env, val);

    ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
    assert_hvf_ok(ret);
    pstate_write(env, val);

    for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
        if (hvf_sreg_match[i].cp_idx == -1) {
            continue;
        }

        ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
        assert_hvf_ok(ret);

        arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
    }
    assert(write_list_to_cpustate(arm_cpu));

    aarch64_restore_sp(env, arm_current_el(env));

    return 0;
}

int hvf_put_registers(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    hv_return_t ret;
    uint64_t val;
    hv_simd_fp_uchar16_t fpval;
    int i;

    for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
        val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
        ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
        assert_hvf_ok(ret);
    }

    for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
        memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
        ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
                                      fpval);
        assert_hvf_ok(ret);
    }

    ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
    assert_hvf_ok(ret);

    ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
    assert_hvf_ok(ret);

    ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
    assert_hvf_ok(ret);

    aarch64_save_sp(env, arm_current_el(env));

    assert(write_cpustate_to_list(arm_cpu, false));
    for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
        if (hvf_sreg_match[i].cp_idx == -1) {
            continue;
        }

        val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
        ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
        assert_hvf_ok(ret);
    }

    ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
    assert_hvf_ok(ret);

    return 0;
}

static void flush_cpu_state(CPUState *cpu)
{
    if (cpu->vcpu_dirty) {
        hvf_put_registers(cpu);
        cpu->vcpu_dirty = false;
    }
}

static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
{
    hv_return_t r;

    flush_cpu_state(cpu);

    if (rt < 31) {
        r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
        assert_hvf_ok(r);
    }
}

static uint64_t hvf_get_reg(CPUState *cpu, int rt)
{
    uint64_t val = 0;
    hv_return_t r;

    flush_cpu_state(cpu);

    if (rt < 31) {
        r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
        assert_hvf_ok(r);
    }

    return val;
}

static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
{
    ARMISARegisters host_isar = {};
    const struct isar_regs {
        int reg;
        uint64_t *val;
    } regs[] = {
        { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
        { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
        { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
        { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
        { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
        { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
        { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
        { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
        { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
    };
    hv_vcpu_t fd;
    hv_return_t r = HV_SUCCESS;
    hv_vcpu_exit_t *exit;
    int i;

    ahcf->dtb_compatible = "arm,arm-v8";
    ahcf->features = (1ULL << ARM_FEATURE_V8) |
                     (1ULL << ARM_FEATURE_NEON) |
                     (1ULL << ARM_FEATURE_AARCH64) |
                     (1ULL << ARM_FEATURE_PMU) |
                     (1ULL << ARM_FEATURE_GENERIC_TIMER);

    /* We set up a small vcpu to extract host registers */

    if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
        return false;
    }

    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
    }
    r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
    r |= hv_vcpu_destroy(fd);

    ahcf->isar = host_isar;

    /*
     * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
     * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
     */
    ahcf->reset_sctlr = 0x30100180;
    /*
     * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
     * let's disable it on boot and then allow guest software to turn it on by
     * setting it to 0.
     */
    ahcf->reset_sctlr |= 0x00800000;

    /* Make sure we don't advertise AArch32 support for EL0/EL1 */
    if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
        return false;
    }

    return r == HV_SUCCESS;
}

void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
{
    if (!arm_host_cpu_features.dtb_compatible) {
        if (!hvf_enabled() ||
            !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
            /*
             * We can't report this error yet, so flag that we need to
             * in arm_cpu_realizefn().
             */
            cpu->host_cpu_probe_failed = true;
            return;
        }
    }

    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
    cpu->isar = arm_host_cpu_features.isar;
    cpu->env.features = arm_host_cpu_features.features;
    cpu->midr = arm_host_cpu_features.midr;
    cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
}

void hvf_arch_vcpu_destroy(CPUState *cpu)
{
}

int hvf_arch_init_vcpu(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
    uint32_t sregs_cnt = 0;
    uint64_t pfr;
    hv_return_t ret;
    int i;

    env->aarch64 = true;
    asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));

    /* Allocate enough space for our sysreg sync */
    arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
                                     sregs_match_len);
    arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
                                    sregs_match_len);
    arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
                                             arm_cpu->cpreg_vmstate_indexes,
                                             sregs_match_len);
    arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
                                            arm_cpu->cpreg_vmstate_values,
                                            sregs_match_len);

    memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));

    /* Populate cp list for all known sysregs */
    for (i = 0; i < sregs_match_len; i++) {
        const ARMCPRegInfo *ri;
        uint32_t key = hvf_sreg_match[i].key;

        ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
        if (ri) {
            assert(!(ri->type & ARM_CP_NO_RAW));
            hvf_sreg_match[i].cp_idx = sregs_cnt;
            arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
        } else {
            hvf_sreg_match[i].cp_idx = -1;
        }
    }
    arm_cpu->cpreg_array_len = sregs_cnt;
    arm_cpu->cpreg_vmstate_array_len = sregs_cnt;

    assert(write_cpustate_to_list(arm_cpu, false));

    /* Set CP_NO_RAW system registers on init */
    ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
                              arm_cpu->midr);
    assert_hvf_ok(ret);

    ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
                              arm_cpu->mp_affinity);
    assert_hvf_ok(ret);

    ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
    assert_hvf_ok(ret);
    pfr |= env->gicv3state ? (1 << 24) : 0;
    ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
    assert_hvf_ok(ret);

    /* We're limited to underlying hardware caps, override internal versions */
    ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
                              &arm_cpu->isar.id_aa64mmfr0);
    assert_hvf_ok(ret);

    return 0;
}

void hvf_kick_vcpu_thread(CPUState *cpu)
{
    cpus_kick_thread(cpu);
    hv_vcpus_exit(&cpu->hvf->fd, 1);
}

static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
                                uint32_t syndrome)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;

    cpu->exception_index = excp;
    env->exception.target_el = 1;
    env->exception.syndrome = syndrome;

    arm_cpu_do_interrupt(cpu);
}

static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
{
    int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
    assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
}

/*
 * Handle a PSCI call.
 *
 * Returns 0 on success
 *         -1 when the PSCI call is unknown,
 */
static bool hvf_handle_psci_call(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    uint64_t param[4] = {
        env->xregs[0],
        env->xregs[1],
        env->xregs[2],
        env->xregs[3]
    };
    uint64_t context_id, mpidr;
    bool target_aarch64 = true;
    CPUState *target_cpu_state;
    ARMCPU *target_cpu;
    target_ulong entry;
    int target_el = 1;
    int32_t ret = 0;

    trace_hvf_psci_call(param[0], param[1], param[2], param[3],
                        arm_cpu->mp_affinity);

    switch (param[0]) {
    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
        ret = QEMU_PSCI_VERSION_1_1;
        break;
    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
        ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
        break;
    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
        mpidr = param[1];

        switch (param[2]) {
        case 0:
            target_cpu_state = arm_get_cpu_by_id(mpidr);
            if (!target_cpu_state) {
                ret = QEMU_PSCI_RET_INVALID_PARAMS;
                break;
            }
            target_cpu = ARM_CPU(target_cpu_state);

            ret = target_cpu->power_state;
            break;
        default:
            /* Everything above affinity level 0 is always on. */
            ret = 0;
        }
        break;
    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
        /*
         * QEMU reset and shutdown are async requests, but PSCI
         * mandates that we never return from the reset/shutdown
         * call, so power the CPU off now so it doesn't execute
         * anything further.
         */
        hvf_psci_cpu_off(arm_cpu);
        break;
    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
        hvf_psci_cpu_off(arm_cpu);
        break;
    case QEMU_PSCI_0_1_FN_CPU_ON:
    case QEMU_PSCI_0_2_FN_CPU_ON:
    case QEMU_PSCI_0_2_FN64_CPU_ON:
        mpidr = param[1];
        entry = param[2];
        context_id = param[3];
        ret = arm_set_cpu_on(mpidr, entry, context_id,
                             target_el, target_aarch64);
        break;
    case QEMU_PSCI_0_1_FN_CPU_OFF:
    case QEMU_PSCI_0_2_FN_CPU_OFF:
        hvf_psci_cpu_off(arm_cpu);
        break;
    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
        /* Affinity levels are not supported in QEMU */
        if (param[1] & 0xfffe0000) {
            ret = QEMU_PSCI_RET_INVALID_PARAMS;
            break;
        }
        /* Powerdown is not supported, we always go into WFI */
        env->xregs[0] = 0;
        hvf_wfi(cpu);
        break;
    case QEMU_PSCI_0_1_FN_MIGRATE:
    case QEMU_PSCI_0_2_FN_MIGRATE:
        ret = QEMU_PSCI_RET_NOT_SUPPORTED;
        break;
    case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
        switch (param[1]) {
        case QEMU_PSCI_0_2_FN_PSCI_VERSION:
        case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
        case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
        case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
        case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
        case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
        case QEMU_PSCI_0_1_FN_CPU_ON:
        case QEMU_PSCI_0_2_FN_CPU_ON:
        case QEMU_PSCI_0_2_FN64_CPU_ON:
        case QEMU_PSCI_0_1_FN_CPU_OFF:
        case QEMU_PSCI_0_2_FN_CPU_OFF:
        case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
        case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
        case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
        case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
            ret = 0;
            break;
        case QEMU_PSCI_0_1_FN_MIGRATE:
        case QEMU_PSCI_0_2_FN_MIGRATE:
        default:
            ret = QEMU_PSCI_RET_NOT_SUPPORTED;
        }
        break;
    default:
        return false;
    }

    env->xregs[0] = ret;
    return true;
}

static bool is_id_sysreg(uint32_t reg)
{
    return SYSREG_OP0(reg) == 3 &&
           SYSREG_OP1(reg) == 0 &&
           SYSREG_CRN(reg) == 0 &&
           SYSREG_CRM(reg) >= 1 &&
           SYSREG_CRM(reg) < 8;
}

static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    uint64_t val = 0;

    switch (reg) {
    case SYSREG_CNTPCT_EL0:
        val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
              gt_cntfrq_period_ns(arm_cpu);
        break;
    case SYSREG_PMCR_EL0:
        val = env->cp15.c9_pmcr;
        break;
    case SYSREG_PMCCNTR_EL0:
        pmu_op_start(env);
        val = env->cp15.c15_ccnt;
        pmu_op_finish(env);
        break;
    case SYSREG_PMCNTENCLR_EL0:
        val = env->cp15.c9_pmcnten;
        break;
    case SYSREG_PMOVSCLR_EL0:
        val = env->cp15.c9_pmovsr;
        break;
    case SYSREG_PMSELR_EL0:
        val = env->cp15.c9_pmselr;
        break;
    case SYSREG_PMINTENCLR_EL1:
        val = env->cp15.c9_pminten;
        break;
    case SYSREG_PMCCFILTR_EL0:
        val = env->cp15.pmccfiltr_el0;
        break;
    case SYSREG_PMCNTENSET_EL0:
        val = env->cp15.c9_pmcnten;
        break;
    case SYSREG_PMUSERENR_EL0:
        val = env->cp15.c9_pmuserenr;
        break;
    case SYSREG_PMCEID0_EL0:
    case SYSREG_PMCEID1_EL0:
        /* We can't really count anything yet, declare all events invalid */
        val = 0;
        break;
    case SYSREG_OSLSR_EL1:
        val = env->cp15.oslsr_el1;
        break;
    case SYSREG_OSDLR_EL1:
        /* Dummy register */
        break;
    default:
        if (is_id_sysreg(reg)) {
            /* ID system registers read as RES0 */
            val = 0;
            break;
        }
        cpu_synchronize_state(cpu);
        trace_hvf_unhandled_sysreg_read(env->pc, reg,
                                        SYSREG_OP0(reg),
                                        SYSREG_OP1(reg),
                                        SYSREG_CRN(reg),
                                        SYSREG_CRM(reg),
                                        SYSREG_OP2(reg));
        hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
        return 1;
    }

    trace_hvf_sysreg_read(reg,
                          SYSREG_OP0(reg),
                          SYSREG_OP1(reg),
                          SYSREG_CRN(reg),
                          SYSREG_CRM(reg),
                          SYSREG_OP2(reg),
                          val);
    hvf_set_reg(cpu, rt, val);

    return 0;
}

static void pmu_update_irq(CPUARMState *env)
{
    ARMCPU *cpu = env_archcpu(env);
    qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
            (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
}

static bool pmu_event_supported(uint16_t number)
{
    return false;
}

/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
 * the current EL, security state, and register configuration.
 */
static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
{
    uint64_t filter;
    bool enabled, filtered = true;
    int el = arm_current_el(env);

    enabled = (env->cp15.c9_pmcr & PMCRE) &&
              (env->cp15.c9_pmcnten & (1 << counter));

    if (counter == 31) {
        filter = env->cp15.pmccfiltr_el0;
    } else {
        filter = env->cp15.c14_pmevtyper[counter];
    }

    if (el == 0) {
        filtered = filter & PMXEVTYPER_U;
    } else if (el == 1) {
        filtered = filter & PMXEVTYPER_P;
    }

    if (counter != 31) {
        /*
         * If not checking PMCCNTR, ensure the counter is setup to an event we
         * support
         */
        uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
        if (!pmu_event_supported(event)) {
            return false;
        }
    }

    return enabled && !filtered;
}

static void pmswinc_write(CPUARMState *env, uint64_t value)
{
    unsigned int i;
    for (i = 0; i < pmu_num_counters(env); i++) {
        /* Increment a counter's count iff: */
        if ((value & (1 << i)) && /* counter's bit is set */
                /* counter is enabled and not filtered */
                pmu_counter_enabled(env, i) &&
                /* counter is SW_INCR */
                (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
            /*
             * Detect if this write causes an overflow since we can't predict
             * PMSWINC overflows like we can for other events
             */
            uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;

            if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
                env->cp15.c9_pmovsr |= (1 << i);
                pmu_update_irq(env);
            }

            env->cp15.c14_pmevcntr[i] = new_pmswinc;
        }
    }
}

static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;

    trace_hvf_sysreg_write(reg,
                           SYSREG_OP0(reg),
                           SYSREG_OP1(reg),
                           SYSREG_CRN(reg),
                           SYSREG_CRM(reg),
                           SYSREG_OP2(reg),
                           val);

    switch (reg) {
    case SYSREG_PMCCNTR_EL0:
        pmu_op_start(env);
        env->cp15.c15_ccnt = val;
        pmu_op_finish(env);
        break;
    case SYSREG_PMCR_EL0:
        pmu_op_start(env);

        if (val & PMCRC) {
            /* The counter has been reset */
            env->cp15.c15_ccnt = 0;
        }

        if (val & PMCRP) {
            unsigned int i;
            for (i = 0; i < pmu_num_counters(env); i++) {
                env->cp15.c14_pmevcntr[i] = 0;
            }
        }

        env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
        env->cp15.c9_pmcr |= (val & PMCR_WRITEABLE_MASK);

        pmu_op_finish(env);
        break;
    case SYSREG_PMUSERENR_EL0:
        env->cp15.c9_pmuserenr = val & 0xf;
        break;
    case SYSREG_PMCNTENSET_EL0:
        env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
        break;
    case SYSREG_PMCNTENCLR_EL0:
        env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
        break;
    case SYSREG_PMINTENCLR_EL1:
        pmu_op_start(env);
        env->cp15.c9_pminten |= val;
        pmu_op_finish(env);
        break;
    case SYSREG_PMOVSCLR_EL0:
        pmu_op_start(env);
        env->cp15.c9_pmovsr &= ~val;
        pmu_op_finish(env);
        break;
    case SYSREG_PMSWINC_EL0:
        pmu_op_start(env);
        pmswinc_write(env, val);
        pmu_op_finish(env);
        break;
    case SYSREG_PMSELR_EL0:
        env->cp15.c9_pmselr = val & 0x1f;
        break;
    case SYSREG_PMCCFILTR_EL0:
        pmu_op_start(env);
        env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
        pmu_op_finish(env);
        break;
    case SYSREG_OSLAR_EL1:
        env->cp15.oslsr_el1 = val & 1;
        break;
    case SYSREG_OSDLR_EL1:
        /* Dummy register */
        break;
    default:
        cpu_synchronize_state(cpu);
        trace_hvf_unhandled_sysreg_write(env->pc, reg,
                                         SYSREG_OP0(reg),
                                         SYSREG_OP1(reg),
                                         SYSREG_CRN(reg),
                                         SYSREG_CRM(reg),
                                         SYSREG_OP2(reg));
        hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
        return 1;
    }

    return 0;
}

static int hvf_inject_interrupts(CPUState *cpu)
{
    if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
        trace_hvf_inject_fiq();
        hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
                                      true);
    }

    if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
        trace_hvf_inject_irq();
        hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
                                      true);
    }

    return 0;
}

static uint64_t hvf_vtimer_val_raw(void)
{
    /*
     * mach_absolute_time() returns the vtimer value without the VM
     * offset that we define. Add our own offset on top.
     */
    return mach_absolute_time() - hvf_state->vtimer_offset;
}

static uint64_t hvf_vtimer_val(void)
{
    if (!runstate_is_running()) {
        /* VM is paused, the vtimer value is in vtimer.vtimer_val */
        return vtimer.vtimer_val;
    }

    return hvf_vtimer_val_raw();
}

static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
{
    /*
     * Use pselect to sleep so that other threads can IPI us while we're
     * sleeping.
     */
    qatomic_mb_set(&cpu->thread_kicked, false);
    qemu_mutex_unlock_iothread();
    pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
    qemu_mutex_lock_iothread();
}

static void hvf_wfi(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    struct timespec ts;
    hv_return_t r;
    uint64_t ctl;
    uint64_t cval;
    int64_t ticks_to_sleep;
    uint64_t seconds;
    uint64_t nanos;
    uint32_t cntfrq;

    if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
        /* Interrupt pending, no need to wait */
        return;
    }

    r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
    assert_hvf_ok(r);

    if (!(ctl & 1) || (ctl & 2)) {
        /* Timer disabled or masked, just wait for an IPI. */
        hvf_wait_for_ipi(cpu, NULL);
        return;
    }

    r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
    assert_hvf_ok(r);

    ticks_to_sleep = cval - hvf_vtimer_val();
    if (ticks_to_sleep < 0) {
        return;
    }

    cntfrq = gt_cntfrq_period_ns(arm_cpu);
    seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
    ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
    nanos = ticks_to_sleep * cntfrq;

    /*
     * Don't sleep for less than the time a context switch would take,
     * so that we can satisfy fast timer requests on the same CPU.
     * Measurements on M1 show the sweet spot to be ~2ms.
     */
    if (!seconds && nanos < (2 * SCALE_MS)) {
        return;
    }

    ts = (struct timespec) { seconds, nanos };
    hvf_wait_for_ipi(cpu, &ts);
}

static void hvf_sync_vtimer(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    hv_return_t r;
    uint64_t ctl;
    bool irq_state;

    if (!cpu->hvf->vtimer_masked) {
        /* We will get notified on vtimer changes by hvf, nothing to do */
        return;
    }

    r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
    assert_hvf_ok(r);

    irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
                (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
    qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);

    if (!irq_state) {
        /* Timer no longer asserting, we can unmask it */
        hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
        cpu->hvf->vtimer_masked = false;
    }
}

int hvf_vcpu_exec(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
    hv_return_t r;
    bool advance_pc = false;

    if (hvf_inject_interrupts(cpu)) {
        return EXCP_INTERRUPT;
    }

    if (cpu->halted) {
        return EXCP_HLT;
    }

    flush_cpu_state(cpu);

    qemu_mutex_unlock_iothread();
    assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));

    /* handle VMEXIT */
    uint64_t exit_reason = hvf_exit->reason;
    uint64_t syndrome = hvf_exit->exception.syndrome;
    uint32_t ec = syn_get_ec(syndrome);

    qemu_mutex_lock_iothread();
    switch (exit_reason) {
    case HV_EXIT_REASON_EXCEPTION:
        /* This is the main one, handle below. */
        break;
    case HV_EXIT_REASON_VTIMER_ACTIVATED:
        qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
        cpu->hvf->vtimer_masked = true;
        return 0;
    case HV_EXIT_REASON_CANCELED:
        /* we got kicked, no exit to process */
        return 0;
    default:
        g_assert_not_reached();
    }

    hvf_sync_vtimer(cpu);

    switch (ec) {
    case EC_DATAABORT: {
        bool isv = syndrome & ARM_EL_ISV;
        bool iswrite = (syndrome >> 6) & 1;
        bool s1ptw = (syndrome >> 7) & 1;
        uint32_t sas = (syndrome >> 22) & 3;
        uint32_t len = 1 << sas;
        uint32_t srt = (syndrome >> 16) & 0x1f;
        uint32_t cm = (syndrome >> 8) & 0x1;
        uint64_t val = 0;

        trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
                             hvf_exit->exception.physical_address, isv,
                             iswrite, s1ptw, len, srt);

        if (cm) {
            /* We don't cache MMIO regions */
            advance_pc = true;
            break;
        }

        assert(isv);

        if (iswrite) {
            val = hvf_get_reg(cpu, srt);
            address_space_write(&address_space_memory,
                                hvf_exit->exception.physical_address,
                                MEMTXATTRS_UNSPECIFIED, &val, len);
        } else {
            address_space_read(&address_space_memory,
                               hvf_exit->exception.physical_address,
                               MEMTXATTRS_UNSPECIFIED, &val, len);
            hvf_set_reg(cpu, srt, val);
        }

        advance_pc = true;
        break;
    }
    case EC_SYSTEMREGISTERTRAP: {
        bool isread = (syndrome >> 0) & 1;
        uint32_t rt = (syndrome >> 5) & 0x1f;
        uint32_t reg = syndrome & SYSREG_MASK;
        uint64_t val;
        int ret = 0;

        if (isread) {
            ret = hvf_sysreg_read(cpu, reg, rt);
        } else {
            val = hvf_get_reg(cpu, rt);
            ret = hvf_sysreg_write(cpu, reg, val);
        }

        advance_pc = !ret;
        break;
    }
    case EC_WFX_TRAP:
        advance_pc = true;
        if (!(syndrome & WFX_IS_WFE)) {
            hvf_wfi(cpu);
        }
        break;
    case EC_AA64_HVC:
        cpu_synchronize_state(cpu);
        if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
            if (!hvf_handle_psci_call(cpu)) {
                trace_hvf_unknown_hvc(env->xregs[0]);
                /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
                env->xregs[0] = -1;
            }
        } else {
            trace_hvf_unknown_hvc(env->xregs[0]);
            hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
        }
        break;
    case EC_AA64_SMC:
        cpu_synchronize_state(cpu);
        if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
            advance_pc = true;

            if (!hvf_handle_psci_call(cpu)) {
                trace_hvf_unknown_smc(env->xregs[0]);
                /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
                env->xregs[0] = -1;
            }
        } else {
            trace_hvf_unknown_smc(env->xregs[0]);
            hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
        }
        break;
    default:
        cpu_synchronize_state(cpu);
        trace_hvf_exit(syndrome, ec, env->pc);
        error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
    }

    if (advance_pc) {
        uint64_t pc;

        flush_cpu_state(cpu);

        r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
        assert_hvf_ok(r);
        pc += 4;
        r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
        assert_hvf_ok(r);
    }

    return 0;
}

static const VMStateDescription vmstate_hvf_vtimer = {
    .name = "hvf-vtimer",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT64(vtimer_val, HVFVTimer),
        VMSTATE_END_OF_LIST()
    },
};

static void hvf_vm_state_change(void *opaque, bool running, RunState state)
{
    HVFVTimer *s = opaque;

    if (running) {
        /* Update vtimer offset on all CPUs */
        hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
        cpu_synchronize_all_states();
    } else {
        /* Remember vtimer value on every pause */
        s->vtimer_val = hvf_vtimer_val_raw();
    }
}

int hvf_arch_init(void)
{
    hvf_state->vtimer_offset = mach_absolute_time();
    vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
    qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
    return 0;
}