aboutsummaryrefslogtreecommitdiff
path: root/target/arm/cpu64.c
blob: d561dc7accc9ced609c3a7dfd3d2d888b63a793c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
/*
 * QEMU AArch64 CPU
 *
 * Copyright (c) 2013 Linaro Ltd
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see
 * <http://www.gnu.org/licenses/gpl-2.0.html>
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#ifdef CONFIG_TCG
#include "hw/core/tcg-cpu-ops.h"
#endif /* CONFIG_TCG */
#include "qemu/module.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "qapi/visitor.h"
#include "hw/qdev-properties.h"


#ifndef CONFIG_USER_ONLY
static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = env_archcpu(env);

    /* Number of cores is in [25:24]; otherwise we RAZ */
    return (cpu->core_count - 1) << 24;
}
#endif

static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
#ifndef CONFIG_USER_ONLY
    { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
      .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
      .writefn = arm_cp_write_ignore },
    { .name = "L2CTLR",
      .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
      .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
      .writefn = arm_cp_write_ignore },
#endif
    { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "L2ECTLR",
      .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CPUACTLR",
      .cp = 15, .opc1 = 0, .crm = 15,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CPUECTLR",
      .cp = 15, .opc1 = 1, .crm = 15,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CPUMERRSR",
      .cp = 15, .opc1 = 2, .crm = 15,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "L2MERRSR",
      .cp = 15, .opc1 = 3, .crm = 15,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

static void aarch64_a57_initfn(Object *obj)
{
    ARMCPU *cpu = ARM_CPU(obj);

    cpu->dtb_compatible = "arm,cortex-a57";
    set_feature(&cpu->env, ARM_FEATURE_V8);
    set_feature(&cpu->env, ARM_FEATURE_NEON);
    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
    set_feature(&cpu->env, ARM_FEATURE_EL2);
    set_feature(&cpu->env, ARM_FEATURE_EL3);
    set_feature(&cpu->env, ARM_FEATURE_PMU);
    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
    cpu->midr = 0x411fd070;
    cpu->revidr = 0x00000000;
    cpu->reset_fpsid = 0x41034070;
    cpu->isar.mvfr0 = 0x10110222;
    cpu->isar.mvfr1 = 0x12111111;
    cpu->isar.mvfr2 = 0x00000043;
    cpu->ctr = 0x8444c004;
    cpu->reset_sctlr = 0x00c50838;
    cpu->isar.id_pfr0 = 0x00000131;
    cpu->isar.id_pfr1 = 0x00011011;
    cpu->isar.id_dfr0 = 0x03010066;
    cpu->id_afr0 = 0x00000000;
    cpu->isar.id_mmfr0 = 0x10101105;
    cpu->isar.id_mmfr1 = 0x40000000;
    cpu->isar.id_mmfr2 = 0x01260000;
    cpu->isar.id_mmfr3 = 0x02102211;
    cpu->isar.id_isar0 = 0x02101110;
    cpu->isar.id_isar1 = 0x13112111;
    cpu->isar.id_isar2 = 0x21232042;
    cpu->isar.id_isar3 = 0x01112131;
    cpu->isar.id_isar4 = 0x00011142;
    cpu->isar.id_isar5 = 0x00011121;
    cpu->isar.id_isar6 = 0;
    cpu->isar.id_aa64pfr0 = 0x00002222;
    cpu->isar.id_aa64dfr0 = 0x10305106;
    cpu->isar.id_aa64isar0 = 0x00011120;
    cpu->isar.id_aa64mmfr0 = 0x00001124;
    cpu->isar.dbgdidr = 0x3516d000;
    cpu->clidr = 0x0a200023;
    cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
    cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
    cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
    cpu->dcz_blocksize = 4; /* 64 bytes */
    cpu->gic_num_lrs = 4;
    cpu->gic_vpribits = 5;
    cpu->gic_vprebits = 5;
    define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
}

static void aarch64_a53_initfn(Object *obj)
{
    ARMCPU *cpu = ARM_CPU(obj);

    cpu->dtb_compatible = "arm,cortex-a53";
    set_feature(&cpu->env, ARM_FEATURE_V8);
    set_feature(&cpu->env, ARM_FEATURE_NEON);
    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
    set_feature(&cpu->env, ARM_FEATURE_EL2);
    set_feature(&cpu->env, ARM_FEATURE_EL3);
    set_feature(&cpu->env, ARM_FEATURE_PMU);
    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
    cpu->midr = 0x410fd034;
    cpu->revidr = 0x00000000;
    cpu->reset_fpsid = 0x41034070;
    cpu->isar.mvfr0 = 0x10110222;
    cpu->isar.mvfr1 = 0x12111111;
    cpu->isar.mvfr2 = 0x00000043;
    cpu->ctr = 0x84448004; /* L1Ip = VIPT */
    cpu->reset_sctlr = 0x00c50838;
    cpu->isar.id_pfr0 = 0x00000131;
    cpu->isar.id_pfr1 = 0x00011011;
    cpu->isar.id_dfr0 = 0x03010066;
    cpu->id_afr0 = 0x00000000;
    cpu->isar.id_mmfr0 = 0x10101105;
    cpu->isar.id_mmfr1 = 0x40000000;
    cpu->isar.id_mmfr2 = 0x01260000;
    cpu->isar.id_mmfr3 = 0x02102211;
    cpu->isar.id_isar0 = 0x02101110;
    cpu->isar.id_isar1 = 0x13112111;
    cpu->isar.id_isar2 = 0x21232042;
    cpu->isar.id_isar3 = 0x01112131;
    cpu->isar.id_isar4 = 0x00011142;
    cpu->isar.id_isar5 = 0x00011121;
    cpu->isar.id_isar6 = 0;
    cpu->isar.id_aa64pfr0 = 0x00002222;
    cpu->isar.id_aa64dfr0 = 0x10305106;
    cpu->isar.id_aa64isar0 = 0x00011120;
    cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
    cpu->isar.dbgdidr = 0x3516d000;
    cpu->clidr = 0x0a200023;
    cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
    cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
    cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
    cpu->dcz_blocksize = 4; /* 64 bytes */
    cpu->gic_num_lrs = 4;
    cpu->gic_vpribits = 5;
    cpu->gic_vprebits = 5;
    define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
}

static void aarch64_a72_initfn(Object *obj)
{
    ARMCPU *cpu = ARM_CPU(obj);

    cpu->dtb_compatible = "arm,cortex-a72";
    set_feature(&cpu->env, ARM_FEATURE_V8);
    set_feature(&cpu->env, ARM_FEATURE_NEON);
    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
    set_feature(&cpu->env, ARM_FEATURE_EL2);
    set_feature(&cpu->env, ARM_FEATURE_EL3);
    set_feature(&cpu->env, ARM_FEATURE_PMU);
    cpu->midr = 0x410fd083;
    cpu->revidr = 0x00000000;
    cpu->reset_fpsid = 0x41034080;
    cpu->isar.mvfr0 = 0x10110222;
    cpu->isar.mvfr1 = 0x12111111;
    cpu->isar.mvfr2 = 0x00000043;
    cpu->ctr = 0x8444c004;
    cpu->reset_sctlr = 0x00c50838;
    cpu->isar.id_pfr0 = 0x00000131;
    cpu->isar.id_pfr1 = 0x00011011;
    cpu->isar.id_dfr0 = 0x03010066;
    cpu->id_afr0 = 0x00000000;
    cpu->isar.id_mmfr0 = 0x10201105;
    cpu->isar.id_mmfr1 = 0x40000000;
    cpu->isar.id_mmfr2 = 0x01260000;
    cpu->isar.id_mmfr3 = 0x02102211;
    cpu->isar.id_isar0 = 0x02101110;
    cpu->isar.id_isar1 = 0x13112111;
    cpu->isar.id_isar2 = 0x21232042;
    cpu->isar.id_isar3 = 0x01112131;
    cpu->isar.id_isar4 = 0x00011142;
    cpu->isar.id_isar5 = 0x00011121;
    cpu->isar.id_aa64pfr0 = 0x00002222;
    cpu->isar.id_aa64dfr0 = 0x10305106;
    cpu->isar.id_aa64isar0 = 0x00011120;
    cpu->isar.id_aa64mmfr0 = 0x00001124;
    cpu->isar.dbgdidr = 0x3516d000;
    cpu->clidr = 0x0a200023;
    cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
    cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
    cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
    cpu->dcz_blocksize = 4; /* 64 bytes */
    cpu->gic_num_lrs = 4;
    cpu->gic_vpribits = 5;
    cpu->gic_vprebits = 5;
    define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
}

void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
{
    /*
     * If any vector lengths are explicitly enabled with sve<N> properties,
     * then all other lengths are implicitly disabled.  If sve-max-vq is
     * specified then it is the same as explicitly enabling all lengths
     * up to and including the specified maximum, which means all larger
     * lengths will be implicitly disabled.  If no sve<N> properties
     * are enabled and sve-max-vq is not specified, then all lengths not
     * explicitly disabled will be enabled.  Additionally, all power-of-two
     * vector lengths less than the maximum enabled length will be
     * automatically enabled and all vector lengths larger than the largest
     * disabled power-of-two vector length will be automatically disabled.
     * Errors are generated if the user provided input that interferes with
     * any of the above.  Finally, if SVE is not disabled, then at least one
     * vector length must be enabled.
     */
    DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
    DECLARE_BITMAP(tmp, ARM_MAX_VQ);
    uint32_t vq, max_vq = 0;

    /* Collect the set of vector lengths supported by KVM. */
    bitmap_zero(kvm_supported, ARM_MAX_VQ);
    if (kvm_enabled() && kvm_arm_sve_supported()) {
        kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
    } else if (kvm_enabled()) {
        assert(!cpu_isar_feature(aa64_sve, cpu));
    }

    /*
     * Process explicit sve<N> properties.
     * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
     * Check first for any sve<N> enabled.
     */
    if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
        max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;

        if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
            error_setg(errp, "cannot enable sve%d", max_vq * 128);
            error_append_hint(errp, "sve%d is larger than the maximum vector "
                              "length, sve-max-vq=%d (%d bits)\n",
                              max_vq * 128, cpu->sve_max_vq,
                              cpu->sve_max_vq * 128);
            return;
        }

        if (kvm_enabled()) {
            /*
             * For KVM we have to automatically enable all supported unitialized
             * lengths, even when the smaller lengths are not all powers-of-two.
             */
            bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
            bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
        } else {
            /* Propagate enabled bits down through required powers-of-two. */
            for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
                if (!test_bit(vq - 1, cpu->sve_vq_init)) {
                    set_bit(vq - 1, cpu->sve_vq_map);
                }
            }
        }
    } else if (cpu->sve_max_vq == 0) {
        /*
         * No explicit bits enabled, and no implicit bits from sve-max-vq.
         */
        if (!cpu_isar_feature(aa64_sve, cpu)) {
            /* SVE is disabled and so are all vector lengths.  Good. */
            return;
        }

        if (kvm_enabled()) {
            /* Disabling a supported length disables all larger lengths. */
            for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
                if (test_bit(vq - 1, cpu->sve_vq_init) &&
                    test_bit(vq - 1, kvm_supported)) {
                    break;
                }
            }
            max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
            bitmap_andnot(cpu->sve_vq_map, kvm_supported,
                          cpu->sve_vq_init, max_vq);
            if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
                error_setg(errp, "cannot disable sve%d", vq * 128);
                error_append_hint(errp, "Disabling sve%d results in all "
                                  "vector lengths being disabled.\n",
                                  vq * 128);
                error_append_hint(errp, "With SVE enabled, at least one "
                                  "vector length must be enabled.\n");
                return;
            }
        } else {
            /* Disabling a power-of-two disables all larger lengths. */
            if (test_bit(0, cpu->sve_vq_init)) {
                error_setg(errp, "cannot disable sve128");
                error_append_hint(errp, "Disabling sve128 results in all "
                                  "vector lengths being disabled.\n");
                error_append_hint(errp, "With SVE enabled, at least one "
                                  "vector length must be enabled.\n");
                return;
            }
            for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
                if (test_bit(vq - 1, cpu->sve_vq_init)) {
                    break;
                }
            }
            max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
            bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
        }

        max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
    }

    /*
     * Process the sve-max-vq property.
     * Note that we know from the above that no bit above
     * sve-max-vq is currently set.
     */
    if (cpu->sve_max_vq != 0) {
        max_vq = cpu->sve_max_vq;

        if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
            test_bit(max_vq - 1, cpu->sve_vq_init)) {
            error_setg(errp, "cannot disable sve%d", max_vq * 128);
            error_append_hint(errp, "The maximum vector length must be "
                              "enabled, sve-max-vq=%d (%d bits)\n",
                              max_vq, max_vq * 128);
            return;
        }

        /* Set all bits not explicitly set within sve-max-vq. */
        bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
        bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
    }

    /*
     * We should know what max-vq is now.  Also, as we're done
     * manipulating sve-vq-map, we ensure any bits above max-vq
     * are clear, just in case anybody looks.
     */
    assert(max_vq != 0);
    bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);

    if (kvm_enabled()) {
        /* Ensure the set of lengths matches what KVM supports. */
        bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
        if (!bitmap_empty(tmp, max_vq)) {
            vq = find_last_bit(tmp, max_vq) + 1;
            if (test_bit(vq - 1, cpu->sve_vq_map)) {
                if (cpu->sve_max_vq) {
                    error_setg(errp, "cannot set sve-max-vq=%d",
                               cpu->sve_max_vq);
                    error_append_hint(errp, "This KVM host does not support "
                                      "the vector length %d-bits.\n",
                                      vq * 128);
                    error_append_hint(errp, "It may not be possible to use "
                                      "sve-max-vq with this KVM host. Try "
                                      "using only sve<N> properties.\n");
                } else {
                    error_setg(errp, "cannot enable sve%d", vq * 128);
                    error_append_hint(errp, "This KVM host does not support "
                                      "the vector length %d-bits.\n",
                                      vq * 128);
                }
            } else {
                error_setg(errp, "cannot disable sve%d", vq * 128);
                error_append_hint(errp, "The KVM host requires all "
                                  "supported vector lengths smaller "
                                  "than %d bits to also be enabled.\n",
                                  max_vq * 128);
            }
            return;
        }
    } else {
        /* Ensure all required powers-of-two are enabled. */
        for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
            if (!test_bit(vq - 1, cpu->sve_vq_map)) {
                error_setg(errp, "cannot disable sve%d", vq * 128);
                error_append_hint(errp, "sve%d is required as it "
                                  "is a power-of-two length smaller than "
                                  "the maximum, sve%d\n",
                                  vq * 128, max_vq * 128);
                return;
            }
        }
    }

    /*
     * Now that we validated all our vector lengths, the only question
     * left to answer is if we even want SVE at all.
     */
    if (!cpu_isar_feature(aa64_sve, cpu)) {
        error_setg(errp, "cannot enable sve%d", max_vq * 128);
        error_append_hint(errp, "SVE must be enabled to enable vector "
                          "lengths.\n");
        error_append_hint(errp, "Add sve=on to the CPU property list.\n");
        return;
    }

    /* From now on sve_max_vq is the actual maximum supported length. */
    cpu->sve_max_vq = max_vq;
}

static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
                                   void *opaque, Error **errp)
{
    ARMCPU *cpu = ARM_CPU(obj);
    uint32_t value;

    /* All vector lengths are disabled when SVE is off. */
    if (!cpu_isar_feature(aa64_sve, cpu)) {
        value = 0;
    } else {
        value = cpu->sve_max_vq;
    }
    visit_type_uint32(v, name, &value, errp);
}

static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
                                   void *opaque, Error **errp)
{
    ARMCPU *cpu = ARM_CPU(obj);
    uint32_t max_vq;

    if (!visit_type_uint32(v, name, &max_vq, errp)) {
        return;
    }

    if (kvm_enabled() && !kvm_arm_sve_supported()) {
        error_setg(errp, "cannot set sve-max-vq");
        error_append_hint(errp, "SVE not supported by KVM on this host\n");
        return;
    }

    if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
        error_setg(errp, "unsupported SVE vector length");
        error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
                          ARM_MAX_VQ);
        return;
    }

    cpu->sve_max_vq = max_vq;
}

/*
 * Note that cpu_arm_get/set_sve_vq cannot use the simpler
 * object_property_add_bool interface because they make use
 * of the contents of "name" to determine which bit on which
 * to operate.
 */
static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
                               void *opaque, Error **errp)
{
    ARMCPU *cpu = ARM_CPU(obj);
    uint32_t vq = atoi(&name[3]) / 128;
    bool value;

    /* All vector lengths are disabled when SVE is off. */
    if (!cpu_isar_feature(aa64_sve, cpu)) {
        value = false;
    } else {
        value = test_bit(vq - 1, cpu->sve_vq_map);
    }
    visit_type_bool(v, name, &value, errp);
}

static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
                               void *opaque, Error **errp)
{
    ARMCPU *cpu = ARM_CPU(obj);
    uint32_t vq = atoi(&name[3]) / 128;
    bool value;

    if (!visit_type_bool(v, name, &value, errp)) {
        return;
    }

    if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
        error_setg(errp, "cannot enable %s", name);
        error_append_hint(errp, "SVE not supported by KVM on this host\n");
        return;
    }

    if (value) {
        set_bit(vq - 1, cpu->sve_vq_map);
    } else {
        clear_bit(vq - 1, cpu->sve_vq_map);
    }
    set_bit(vq - 1, cpu->sve_vq_init);
}

static bool cpu_arm_get_sve(Object *obj, Error **errp)
{
    ARMCPU *cpu = ARM_CPU(obj);
    return cpu_isar_feature(aa64_sve, cpu);
}

static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
{
    ARMCPU *cpu = ARM_CPU(obj);
    uint64_t t;

    if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
        error_setg(errp, "'sve' feature not supported by KVM on this host");
        return;
    }

    t = cpu->isar.id_aa64pfr0;
    t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
    cpu->isar.id_aa64pfr0 = t;
}

void aarch64_add_sve_properties(Object *obj)
{
    uint32_t vq;

    object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);

    for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
        char name[8];
        sprintf(name, "sve%d", vq * 128);
        object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
                            cpu_arm_set_sve_vq, NULL, NULL);
    }
}

void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
{
    int arch_val = 0, impdef_val = 0;
    uint64_t t;

    /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
    if (cpu->prop_pauth) {
        if (cpu->prop_pauth_impdef) {
            impdef_val = 1;
        } else {
            arch_val = 1;
        }
    } else if (cpu->prop_pauth_impdef) {
        error_setg(errp, "cannot enable pauth-impdef without pauth");
        error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
    }

    t = cpu->isar.id_aa64isar1;
    t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
    t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
    t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
    t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
    cpu->isar.id_aa64isar1 = t;
}

static Property arm_cpu_pauth_property =
    DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
static Property arm_cpu_pauth_impdef_property =
    DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);

/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
 * otherwise, a CPU with as many features enabled as our emulation supports.
 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
 * this only needs to handle 64 bits.
 */
static void aarch64_max_initfn(Object *obj)
{
    ARMCPU *cpu = ARM_CPU(obj);

    if (kvm_enabled()) {
        kvm_arm_set_cpu_features_from_host(cpu);
    } else {
        uint64_t t;
        uint32_t u;
        aarch64_a57_initfn(obj);

        /*
         * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
         * one and try to apply errata workarounds or use impdef features we
         * don't provide.
         * An IMPLEMENTER field of 0 means "reserved for software use";
         * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
         * to see which features are present";
         * the VARIANT, PARTNUM and REVISION fields are all implementation
         * defined and we choose to define PARTNUM just in case guest
         * code needs to distinguish this QEMU CPU from other software
         * implementations, though this shouldn't be needed.
         */
        t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
        t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
        t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
        t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
        t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
        cpu->midr = t;

        t = cpu->isar.id_aa64isar0;
        t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
        t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
        t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
        t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
        t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
        t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
        t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
        t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
        t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
        t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
        t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
        t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
        cpu->isar.id_aa64isar0 = t;

        t = cpu->isar.id_aa64isar1;
        t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
        t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
        t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
        t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
        t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);
        cpu->isar.id_aa64isar1 = t;

        t = cpu->isar.id_aa64pfr0;
        t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
        t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
        t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
        t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
        cpu->isar.id_aa64pfr0 = t;

        t = cpu->isar.id_aa64pfr1;
        t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
        t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
        /*
         * Begin with full support for MTE. This will be downgraded to MTE=0
         * during realize if the board provides no tag memory, much like
         * we do for EL2 with the virtualization=on property.
         */
        t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2);
        cpu->isar.id_aa64pfr1 = t;

        t = cpu->isar.id_aa64mmfr0;
        t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
        cpu->isar.id_aa64mmfr0 = t;

        t = cpu->isar.id_aa64mmfr1;
        t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
        t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
        t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
        t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
        t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
        t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
        cpu->isar.id_aa64mmfr1 = t;

        t = cpu->isar.id_aa64mmfr2;
        t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
        t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
        t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
        cpu->isar.id_aa64mmfr2 = t;

        t = cpu->isar.id_aa64zfr0;
        t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
        t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2);  /* PMULL */
        t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);
        t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);
        t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);
        t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);
        t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);
        t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);
        cpu->isar.id_aa64zfr0 = t;

        /* Replicate the same data to the 32-bit id registers.  */
        u = cpu->isar.id_isar5;
        u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
        u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
        u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
        u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
        u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
        u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
        cpu->isar.id_isar5 = u;

        u = cpu->isar.id_isar6;
        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
        u = FIELD_DP32(u, ID_ISAR6, DP, 1);
        u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
        u = FIELD_DP32(u, ID_ISAR6, SB, 1);
        u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
        u = FIELD_DP32(u, ID_ISAR6, I8MM, 1);
        cpu->isar.id_isar6 = u;

        u = cpu->isar.id_pfr0;
        u = FIELD_DP32(u, ID_PFR0, DIT, 1);
        cpu->isar.id_pfr0 = u;

        u = cpu->isar.id_pfr2;
        u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
        cpu->isar.id_pfr2 = u;

        u = cpu->isar.id_mmfr3;
        u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
        cpu->isar.id_mmfr3 = u;

        u = cpu->isar.id_mmfr4;
        u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
        u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
        u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
        u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
        cpu->isar.id_mmfr4 = u;

        t = cpu->isar.id_aa64dfr0;
        t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
        cpu->isar.id_aa64dfr0 = t;

        u = cpu->isar.id_dfr0;
        u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
        cpu->isar.id_dfr0 = u;

        u = cpu->isar.mvfr1;
        u = FIELD_DP32(u, MVFR1, FPHP, 3);      /* v8.2-FP16 */
        u = FIELD_DP32(u, MVFR1, SIMDHP, 2);    /* v8.2-FP16 */
        cpu->isar.mvfr1 = u;

#ifdef CONFIG_USER_ONLY
        /* For usermode -cpu max we can use a larger and more efficient DCZ
         * blocksize since we don't have to follow what the hardware does.
         */
        cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
        cpu->dcz_blocksize = 7; /*  512 bytes */
#endif

        /* Default to PAUTH on, with the architected algorithm. */
        qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
        qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
    }

    aarch64_add_sve_properties(obj);
    object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
                        cpu_max_set_sve_max_vq, NULL, NULL);
}

static const ARMCPUInfo aarch64_cpus[] = {
    { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
    { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
    { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
    { .name = "max",                .initfn = aarch64_max_initfn },
};

static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
{
    ARMCPU *cpu = ARM_CPU(obj);

    return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
}

static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
{
    ARMCPU *cpu = ARM_CPU(obj);

    /* At this time, this property is only allowed if KVM is enabled.  This
     * restriction allows us to avoid fixing up functionality that assumes a
     * uniform execution state like do_interrupt.
     */
    if (value == false) {
        if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
            error_setg(errp, "'aarch64' feature cannot be disabled "
                             "unless KVM is enabled and 32-bit EL1 "
                             "is supported");
            return;
        }
        unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
    } else {
        set_feature(&cpu->env, ARM_FEATURE_AARCH64);
    }
}

static void aarch64_cpu_finalizefn(Object *obj)
{
}

static gchar *aarch64_gdb_arch_name(CPUState *cs)
{
    return g_strdup("aarch64");
}

static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
{
    CPUClass *cc = CPU_CLASS(oc);

    cc->gdb_read_register = aarch64_cpu_gdb_read_register;
    cc->gdb_write_register = aarch64_cpu_gdb_write_register;
    cc->gdb_num_core_regs = 34;
    cc->gdb_core_xml_file = "aarch64-core.xml";
    cc->gdb_arch_name = aarch64_gdb_arch_name;

    object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
                                   aarch64_cpu_set_aarch64);
    object_class_property_set_description(oc, "aarch64",
                                          "Set on/off to enable/disable aarch64 "
                                          "execution state ");
}

static void aarch64_cpu_instance_init(Object *obj)
{
    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);

    acc->info->initfn(obj);
    arm_cpu_post_init(obj);
}

static void cpu_register_class_init(ObjectClass *oc, void *data)
{
    ARMCPUClass *acc = ARM_CPU_CLASS(oc);

    acc->info = data;
}

void aarch64_cpu_register(const ARMCPUInfo *info)
{
    TypeInfo type_info = {
        .parent = TYPE_AARCH64_CPU,
        .instance_size = sizeof(ARMCPU),
        .instance_init = aarch64_cpu_instance_init,
        .class_size = sizeof(ARMCPUClass),
        .class_init = info->class_init ?: cpu_register_class_init,
        .class_data = (void *)info,
    };

    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
    type_register(&type_info);
    g_free((void *)type_info.name);
}

static const TypeInfo aarch64_cpu_type_info = {
    .name = TYPE_AARCH64_CPU,
    .parent = TYPE_ARM_CPU,
    .instance_size = sizeof(ARMCPU),
    .instance_finalize = aarch64_cpu_finalizefn,
    .abstract = true,
    .class_size = sizeof(AArch64CPUClass),
    .class_init = aarch64_cpu_class_init,
};

static void aarch64_cpu_register_types(void)
{
    size_t i;

    type_register_static(&aarch64_cpu_type_info);

    for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
        aarch64_cpu_register(&aarch64_cpus[i]);
    }
}

type_init(aarch64_cpu_register_types)