aboutsummaryrefslogtreecommitdiff
path: root/target/arm/cpregs.h
blob: 3c5f1b488799a4532031e420a18cefdfa630b5fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
/*
 * QEMU ARM CP Register access and descriptions
 *
 * Copyright (c) 2022 Linaro Ltd
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see
 * <http://www.gnu.org/licenses/gpl-2.0.html>
 */

#ifndef TARGET_ARM_CPREGS_H
#define TARGET_ARM_CPREGS_H

/*
 * ARMCPRegInfo type field bits:
 */
enum {
    /*
     * Register must be handled specially during translation.
     * The method is one of the values below:
     */
    ARM_CP_SPECIAL_MASK          = 0x000f,
    /* Special: no change to PE state: writes ignored, reads ignored. */
    ARM_CP_NOP                   = 0x0001,
    /* Special: sysreg is WFI, for v5 and v6. */
    ARM_CP_WFI                   = 0x0002,
    /* Special: sysreg is NZCV. */
    ARM_CP_NZCV                  = 0x0003,
    /* Special: sysreg is CURRENTEL. */
    ARM_CP_CURRENTEL             = 0x0004,
    /* Special: sysreg is DC ZVA or similar. */
    ARM_CP_DC_ZVA                = 0x0005,
    ARM_CP_DC_GVA                = 0x0006,
    ARM_CP_DC_GZVA               = 0x0007,

    /* Flag: reads produce resetvalue; writes ignored. */
    ARM_CP_CONST                 = 1 << 4,
    /* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */
    ARM_CP_64BIT                 = 1 << 5,
    /*
     * Flag: TB should not be ended after a write to this register
     * (the default is that the TB ends after cp writes).
     */
    ARM_CP_SUPPRESS_TB_END       = 1 << 6,
    /*
     * Flag: Permit a register definition to override a previous definition
     * for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new
     * or the old must have the ARM_CP_OVERRIDE bit set.
     */
    ARM_CP_OVERRIDE              = 1 << 7,
    /*
     * Flag: Register is an alias view of some underlying state which is also
     * visible via another register, and that the other register is handling
     * migration and reset; registers marked ARM_CP_ALIAS will not be migrated
     * but may have their state set by syncing of register state from KVM.
     */
    ARM_CP_ALIAS                 = 1 << 8,
    /*
     * Flag: Register does I/O and therefore its accesses need to be marked
     * with translator_io_start() and also end the TB. In particular,
     * registers which implement clocks or timers require this.
     */
    ARM_CP_IO                    = 1 << 9,
    /*
     * Flag: Register has no underlying state and does not support raw access
     * for state saving/loading; it will not be used for either migration or
     * KVM state synchronization. Typically this is for "registers" which are
     * actually used as instructions for cache maintenance and so on.
     */
    ARM_CP_NO_RAW                = 1 << 10,
    /*
     * Flag: The read or write hook might raise an exception; the generated
     * code will synchronize the CPU state before calling the hook so that it
     * is safe for the hook to call raise_exception().
     */
    ARM_CP_RAISES_EXC            = 1 << 11,
    /*
     * Flag: Writes to the sysreg might change the exception level - typically
     * on older ARM chips. For those cases we need to re-read the new el when
     * recomputing the translation flags.
     */
    ARM_CP_NEWEL                 = 1 << 12,
    /*
     * Flag: Access check for this sysreg is identical to accessing FPU state
     * from an instruction: use translation fp_access_check().
     */
    ARM_CP_FPU                   = 1 << 13,
    /*
     * Flag: Access check for this sysreg is identical to accessing SVE state
     * from an instruction: use translation sve_access_check().
     */
    ARM_CP_SVE                   = 1 << 14,
    /* Flag: Do not expose in gdb sysreg xml. */
    ARM_CP_NO_GDB                = 1 << 15,
    /*
     * Flags: If EL3 but not EL2...
     *   - UNDEF: discard the cpreg,
     *   -  KEEP: retain the cpreg as is,
     *   -  C_NZ: set const on the cpreg, but retain resetvalue,
     *   -  else: set const on the cpreg, zero resetvalue, aka RES0.
     * See rule RJFFP in section D1.1.3 of DDI0487H.a.
     */
    ARM_CP_EL3_NO_EL2_UNDEF      = 1 << 16,
    ARM_CP_EL3_NO_EL2_KEEP       = 1 << 17,
    ARM_CP_EL3_NO_EL2_C_NZ       = 1 << 18,
    /*
     * Flag: Access check for this sysreg is constrained by the
     * ARM pseudocode function CheckSMEAccess().
     */
    ARM_CP_SME                   = 1 << 19,
};

/*
 * Interface for defining coprocessor registers.
 * Registers are defined in tables of arm_cp_reginfo structs
 * which are passed to define_arm_cp_regs().
 */

/*
 * When looking up a coprocessor register we look for it
 * via an integer which encodes all of:
 *  coprocessor number
 *  Crn, Crm, opc1, opc2 fields
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
 *    or via MRRC/MCRR?)
 *  non-secure/secure bank (AArch32 only)
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 * (In this case crn and opc2 should be zero.)
 * For AArch64, there is no 32/64 bit size distinction;
 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 * and 4 bit CRn and CRm. The encoding patterns are chosen
 * to be easy to convert to and from the KVM encodings, and also
 * so that the hashtable can contain both AArch32 and AArch64
 * registers (to allow for interprocessing where we might run
 * 32 bit code on a 64 bit core).
 */
/*
 * This bit is private to our hashtable cpreg; in KVM register
 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 * in the upper bits of the 64 bit ID.
 */
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)

/*
 * To enable banking of coprocessor registers depending on ns-bit we
 * add a bit to distinguish between secure and non-secure cpregs in the
 * hashtable.
 */
#define CP_REG_NS_SHIFT 29
#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)

#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))

#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
    (CP_REG_AA64_MASK |                                 \
     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))

/*
 * Convert a full 64 bit KVM register ID to the truncated 32 bit
 * version used as a key for the coprocessor register hashtable
 */
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
    uint32_t cpregid = kvmid;
    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
        cpregid |= CP_REG_AA64_MASK;
    } else {
        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
            cpregid |= (1 << 15);
        }

        /*
         * KVM is always non-secure so add the NS flag on AArch32 register
         * entries.
         */
         cpregid |= 1 << CP_REG_NS_SHIFT;
    }
    return cpregid;
}

/*
 * Convert a truncated 32 bit hashtable key into the full
 * 64 bit KVM register ID.
 */
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
    uint64_t kvmid;

    if (cpregid & CP_REG_AA64_MASK) {
        kvmid = cpregid & ~CP_REG_AA64_MASK;
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
    } else {
        kvmid = cpregid & ~(1 << 15);
        if (cpregid & (1 << 15)) {
            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
        } else {
            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
        }
    }
    return kvmid;
}

/*
 * Valid values for ARMCPRegInfo state field, indicating which of
 * the AArch32 and AArch64 execution states this register is visible in.
 * If the reginfo doesn't explicitly specify then it is AArch32 only.
 * If the reginfo is declared to be visible in both states then a second
 * reginfo is synthesised for the AArch32 view of the AArch64 register,
 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 * Note that we rely on the values of these enums as we iterate through
 * the various states in some places.
 */
typedef enum {
    ARM_CP_STATE_AA32 = 0,
    ARM_CP_STATE_AA64 = 1,
    ARM_CP_STATE_BOTH = 2,
} CPState;

/*
 * ARM CP register secure state flags.  These flags identify security state
 * attributes for a given CP register entry.
 * The existence of both or neither secure and non-secure flags indicates that
 * the register has both a secure and non-secure hash entry.  A single one of
 * these flags causes the register to only be hashed for the specified
 * security state.
 * Although definitions may have any combination of the S/NS bits, each
 * registered entry will only have one to identify whether the entry is secure
 * or non-secure.
 */
typedef enum {
    ARM_CP_SECSTATE_BOTH = 0,       /* define one cpreg for each secstate */
    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
} CPSecureState;

/*
 * Access rights:
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 * (ie any of the privileged modes in Secure state, or Monitor mode).
 * If a register is accessible in one privilege level it's always accessible
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 * terminology a little and call this PL3.
 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 * with the ELx exception levels.
 *
 * If access permissions for a register are more complex than can be
 * described with these bits, then use a laxer set of restrictions, and
 * do the more restrictive/complex check inside a helper function.
 */
typedef enum {
    PL3_R = 0x80,
    PL3_W = 0x40,
    PL2_R = 0x20 | PL3_R,
    PL2_W = 0x10 | PL3_W,
    PL1_R = 0x08 | PL2_R,
    PL1_W = 0x04 | PL2_W,
    PL0_R = 0x02 | PL1_R,
    PL0_W = 0x01 | PL1_W,

    /*
     * For user-mode some registers are accessible to EL0 via a kernel
     * trap-and-emulate ABI. In this case we define the read permissions
     * as actually being PL0_R. However some bits of any given register
     * may still be masked.
     */
#ifdef CONFIG_USER_ONLY
    PL0U_R = PL0_R,
#else
    PL0U_R = PL1_R,
#endif

    PL3_RW = PL3_R | PL3_W,
    PL2_RW = PL2_R | PL2_W,
    PL1_RW = PL1_R | PL1_W,
    PL0_RW = PL0_R | PL0_W,
} CPAccessRights;

typedef enum CPAccessResult {
    /* Access is permitted */
    CP_ACCESS_OK = 0,

    /*
     * Combined with one of the following, the low 2 bits indicate the
     * target exception level.  If 0, the exception is taken to the usual
     * target EL (EL1 or PL1 if in EL0, otherwise to the current EL).
     */
    CP_ACCESS_EL_MASK = 3,

    /*
     * Access fails due to a configurable trap or enable which would
     * result in a categorized exception syndrome giving information about
     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
     * 0xc or 0x18).
     */
    CP_ACCESS_TRAP = (1 << 2),
    CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP | 2,
    CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP | 3,

    /*
     * Access fails and results in an exception syndrome 0x0 ("uncategorized").
     * Note that this is not a catch-all case -- the set of cases which may
     * result in this failure is specifically defined by the architecture.
     * This trap is always to the usual target EL, never directly to a
     * specified target EL.
     */
    CP_ACCESS_TRAP_UNCATEGORIZED = (2 << 2),
} CPAccessResult;

/* Indexes into fgt_read[] */
#define FGTREG_HFGRTR 0
#define FGTREG_HDFGRTR 1
/* Indexes into fgt_write[] */
#define FGTREG_HFGWTR 0
#define FGTREG_HDFGWTR 1
/* Indexes into fgt_exec[] */
#define FGTREG_HFGITR 0

FIELD(HFGRTR_EL2, AFSR0_EL1, 0, 1)
FIELD(HFGRTR_EL2, AFSR1_EL1, 1, 1)
FIELD(HFGRTR_EL2, AIDR_EL1, 2, 1)
FIELD(HFGRTR_EL2, AMAIR_EL1, 3, 1)
FIELD(HFGRTR_EL2, APDAKEY, 4, 1)
FIELD(HFGRTR_EL2, APDBKEY, 5, 1)
FIELD(HFGRTR_EL2, APGAKEY, 6, 1)
FIELD(HFGRTR_EL2, APIAKEY, 7, 1)
FIELD(HFGRTR_EL2, APIBKEY, 8, 1)
FIELD(HFGRTR_EL2, CCSIDR_EL1, 9, 1)
FIELD(HFGRTR_EL2, CLIDR_EL1, 10, 1)
FIELD(HFGRTR_EL2, CONTEXTIDR_EL1, 11, 1)
FIELD(HFGRTR_EL2, CPACR_EL1, 12, 1)
FIELD(HFGRTR_EL2, CSSELR_EL1, 13, 1)
FIELD(HFGRTR_EL2, CTR_EL0, 14, 1)
FIELD(HFGRTR_EL2, DCZID_EL0, 15, 1)
FIELD(HFGRTR_EL2, ESR_EL1, 16, 1)
FIELD(HFGRTR_EL2, FAR_EL1, 17, 1)
FIELD(HFGRTR_EL2, ISR_EL1, 18, 1)
FIELD(HFGRTR_EL2, LORC_EL1, 19, 1)
FIELD(HFGRTR_EL2, LOREA_EL1, 20, 1)
FIELD(HFGRTR_EL2, LORID_EL1, 21, 1)
FIELD(HFGRTR_EL2, LORN_EL1, 22, 1)
FIELD(HFGRTR_EL2, LORSA_EL1, 23, 1)
FIELD(HFGRTR_EL2, MAIR_EL1, 24, 1)
FIELD(HFGRTR_EL2, MIDR_EL1, 25, 1)
FIELD(HFGRTR_EL2, MPIDR_EL1, 26, 1)
FIELD(HFGRTR_EL2, PAR_EL1, 27, 1)
FIELD(HFGRTR_EL2, REVIDR_EL1, 28, 1)
FIELD(HFGRTR_EL2, SCTLR_EL1, 29, 1)
FIELD(HFGRTR_EL2, SCXTNUM_EL1, 30, 1)
FIELD(HFGRTR_EL2, SCXTNUM_EL0, 31, 1)
FIELD(HFGRTR_EL2, TCR_EL1, 32, 1)
FIELD(HFGRTR_EL2, TPIDR_EL1, 33, 1)
FIELD(HFGRTR_EL2, TPIDRRO_EL0, 34, 1)
FIELD(HFGRTR_EL2, TPIDR_EL0, 35, 1)
FIELD(HFGRTR_EL2, TTBR0_EL1, 36, 1)
FIELD(HFGRTR_EL2, TTBR1_EL1, 37, 1)
FIELD(HFGRTR_EL2, VBAR_EL1, 38, 1)
FIELD(HFGRTR_EL2, ICC_IGRPENN_EL1, 39, 1)
FIELD(HFGRTR_EL2, ERRIDR_EL1, 40, 1)
FIELD(HFGRTR_EL2, ERRSELR_EL1, 41, 1)
FIELD(HFGRTR_EL2, ERXFR_EL1, 42, 1)
FIELD(HFGRTR_EL2, ERXCTLR_EL1, 43, 1)
FIELD(HFGRTR_EL2, ERXSTATUS_EL1, 44, 1)
FIELD(HFGRTR_EL2, ERXMISCN_EL1, 45, 1)
FIELD(HFGRTR_EL2, ERXPFGF_EL1, 46, 1)
FIELD(HFGRTR_EL2, ERXPFGCTL_EL1, 47, 1)
FIELD(HFGRTR_EL2, ERXPFGCDN_EL1, 48, 1)
FIELD(HFGRTR_EL2, ERXADDR_EL1, 49, 1)
FIELD(HFGRTR_EL2, NACCDATA_EL1, 50, 1)
/* 51-53: RES0 */
FIELD(HFGRTR_EL2, NSMPRI_EL1, 54, 1)
FIELD(HFGRTR_EL2, NTPIDR2_EL0, 55, 1)
/* 56-63: RES0 */

/* These match HFGRTR but bits for RO registers are RES0 */
FIELD(HFGWTR_EL2, AFSR0_EL1, 0, 1)
FIELD(HFGWTR_EL2, AFSR1_EL1, 1, 1)
FIELD(HFGWTR_EL2, AMAIR_EL1, 3, 1)
FIELD(HFGWTR_EL2, APDAKEY, 4, 1)
FIELD(HFGWTR_EL2, APDBKEY, 5, 1)
FIELD(HFGWTR_EL2, APGAKEY, 6, 1)
FIELD(HFGWTR_EL2, APIAKEY, 7, 1)
FIELD(HFGWTR_EL2, APIBKEY, 8, 1)
FIELD(HFGWTR_EL2, CONTEXTIDR_EL1, 11, 1)
FIELD(HFGWTR_EL2, CPACR_EL1, 12, 1)
FIELD(HFGWTR_EL2, CSSELR_EL1, 13, 1)
FIELD(HFGWTR_EL2, ESR_EL1, 16, 1)
FIELD(HFGWTR_EL2, FAR_EL1, 17, 1)
FIELD(HFGWTR_EL2, LORC_EL1, 19, 1)
FIELD(HFGWTR_EL2, LOREA_EL1, 20, 1)
FIELD(HFGWTR_EL2, LORN_EL1, 22, 1)
FIELD(HFGWTR_EL2, LORSA_EL1, 23, 1)
FIELD(HFGWTR_EL2, MAIR_EL1, 24, 1)
FIELD(HFGWTR_EL2, PAR_EL1, 27, 1)
FIELD(HFGWTR_EL2, SCTLR_EL1, 29, 1)
FIELD(HFGWTR_EL2, SCXTNUM_EL1, 30, 1)
FIELD(HFGWTR_EL2, SCXTNUM_EL0, 31, 1)
FIELD(HFGWTR_EL2, TCR_EL1, 32, 1)
FIELD(HFGWTR_EL2, TPIDR_EL1, 33, 1)
FIELD(HFGWTR_EL2, TPIDRRO_EL0, 34, 1)
FIELD(HFGWTR_EL2, TPIDR_EL0, 35, 1)
FIELD(HFGWTR_EL2, TTBR0_EL1, 36, 1)
FIELD(HFGWTR_EL2, TTBR1_EL1, 37, 1)
FIELD(HFGWTR_EL2, VBAR_EL1, 38, 1)
FIELD(HFGWTR_EL2, ICC_IGRPENN_EL1, 39, 1)
FIELD(HFGWTR_EL2, ERRSELR_EL1, 41, 1)
FIELD(HFGWTR_EL2, ERXCTLR_EL1, 43, 1)
FIELD(HFGWTR_EL2, ERXSTATUS_EL1, 44, 1)
FIELD(HFGWTR_EL2, ERXMISCN_EL1, 45, 1)
FIELD(HFGWTR_EL2, ERXPFGCTL_EL1, 47, 1)
FIELD(HFGWTR_EL2, ERXPFGCDN_EL1, 48, 1)
FIELD(HFGWTR_EL2, ERXADDR_EL1, 49, 1)
FIELD(HFGWTR_EL2, NACCDATA_EL1, 50, 1)
FIELD(HFGWTR_EL2, NSMPRI_EL1, 54, 1)
FIELD(HFGWTR_EL2, NTPIDR2_EL0, 55, 1)

FIELD(HFGITR_EL2, ICIALLUIS, 0, 1)
FIELD(HFGITR_EL2, ICIALLU, 1, 1)
FIELD(HFGITR_EL2, ICIVAU, 2, 1)
FIELD(HFGITR_EL2, DCIVAC, 3, 1)
FIELD(HFGITR_EL2, DCISW, 4, 1)
FIELD(HFGITR_EL2, DCCSW, 5, 1)
FIELD(HFGITR_EL2, DCCISW, 6, 1)
FIELD(HFGITR_EL2, DCCVAU, 7, 1)
FIELD(HFGITR_EL2, DCCVAP, 8, 1)
FIELD(HFGITR_EL2, DCCVADP, 9, 1)
FIELD(HFGITR_EL2, DCCIVAC, 10, 1)
FIELD(HFGITR_EL2, DCZVA, 11, 1)
FIELD(HFGITR_EL2, ATS1E1R, 12, 1)
FIELD(HFGITR_EL2, ATS1E1W, 13, 1)
FIELD(HFGITR_EL2, ATS1E0R, 14, 1)
FIELD(HFGITR_EL2, ATS1E0W, 15, 1)
FIELD(HFGITR_EL2, ATS1E1RP, 16, 1)
FIELD(HFGITR_EL2, ATS1E1WP, 17, 1)
FIELD(HFGITR_EL2, TLBIVMALLE1OS, 18, 1)
FIELD(HFGITR_EL2, TLBIVAE1OS, 19, 1)
FIELD(HFGITR_EL2, TLBIASIDE1OS, 20, 1)
FIELD(HFGITR_EL2, TLBIVAAE1OS, 21, 1)
FIELD(HFGITR_EL2, TLBIVALE1OS, 22, 1)
FIELD(HFGITR_EL2, TLBIVAALE1OS, 23, 1)
FIELD(HFGITR_EL2, TLBIRVAE1OS, 24, 1)
FIELD(HFGITR_EL2, TLBIRVAAE1OS, 25, 1)
FIELD(HFGITR_EL2, TLBIRVALE1OS, 26, 1)
FIELD(HFGITR_EL2, TLBIRVAALE1OS, 27, 1)
FIELD(HFGITR_EL2, TLBIVMALLE1IS, 28, 1)
FIELD(HFGITR_EL2, TLBIVAE1IS, 29, 1)
FIELD(HFGITR_EL2, TLBIASIDE1IS, 30, 1)
FIELD(HFGITR_EL2, TLBIVAAE1IS, 31, 1)
FIELD(HFGITR_EL2, TLBIVALE1IS, 32, 1)
FIELD(HFGITR_EL2, TLBIVAALE1IS, 33, 1)
FIELD(HFGITR_EL2, TLBIRVAE1IS, 34, 1)
FIELD(HFGITR_EL2, TLBIRVAAE1IS, 35, 1)
FIELD(HFGITR_EL2, TLBIRVALE1IS, 36, 1)
FIELD(HFGITR_EL2, TLBIRVAALE1IS, 37, 1)
FIELD(HFGITR_EL2, TLBIRVAE1, 38, 1)
FIELD(HFGITR_EL2, TLBIRVAAE1, 39, 1)
FIELD(HFGITR_EL2, TLBIRVALE1, 40, 1)
FIELD(HFGITR_EL2, TLBIRVAALE1, 41, 1)
FIELD(HFGITR_EL2, TLBIVMALLE1, 42, 1)
FIELD(HFGITR_EL2, TLBIVAE1, 43, 1)
FIELD(HFGITR_EL2, TLBIASIDE1, 44, 1)
FIELD(HFGITR_EL2, TLBIVAAE1, 45, 1)
FIELD(HFGITR_EL2, TLBIVALE1, 46, 1)
FIELD(HFGITR_EL2, TLBIVAALE1, 47, 1)
FIELD(HFGITR_EL2, CFPRCTX, 48, 1)
FIELD(HFGITR_EL2, DVPRCTX, 49, 1)
FIELD(HFGITR_EL2, CPPRCTX, 50, 1)
FIELD(HFGITR_EL2, ERET, 51, 1)
FIELD(HFGITR_EL2, SVC_EL0, 52, 1)
FIELD(HFGITR_EL2, SVC_EL1, 53, 1)
FIELD(HFGITR_EL2, DCCVAC, 54, 1)
FIELD(HFGITR_EL2, NBRBINJ, 55, 1)
FIELD(HFGITR_EL2, NBRBIALL, 56, 1)

FIELD(HDFGRTR_EL2, DBGBCRN_EL1, 0, 1)
FIELD(HDFGRTR_EL2, DBGBVRN_EL1, 1, 1)
FIELD(HDFGRTR_EL2, DBGWCRN_EL1, 2, 1)
FIELD(HDFGRTR_EL2, DBGWVRN_EL1, 3, 1)
FIELD(HDFGRTR_EL2, MDSCR_EL1, 4, 1)
FIELD(HDFGRTR_EL2, DBGCLAIM, 5, 1)
FIELD(HDFGRTR_EL2, DBGAUTHSTATUS_EL1, 6, 1)
FIELD(HDFGRTR_EL2, DBGPRCR_EL1, 7, 1)
/* 8: RES0: OSLAR_EL1 is WO */
FIELD(HDFGRTR_EL2, OSLSR_EL1, 9, 1)
FIELD(HDFGRTR_EL2, OSECCR_EL1, 10, 1)
FIELD(HDFGRTR_EL2, OSDLR_EL1, 11, 1)
FIELD(HDFGRTR_EL2, PMEVCNTRN_EL0, 12, 1)
FIELD(HDFGRTR_EL2, PMEVTYPERN_EL0, 13, 1)
FIELD(HDFGRTR_EL2, PMCCFILTR_EL0, 14, 1)
FIELD(HDFGRTR_EL2, PMCCNTR_EL0, 15, 1)
FIELD(HDFGRTR_EL2, PMCNTEN, 16, 1)
FIELD(HDFGRTR_EL2, PMINTEN, 17, 1)
FIELD(HDFGRTR_EL2, PMOVS, 18, 1)
FIELD(HDFGRTR_EL2, PMSELR_EL0, 19, 1)
/* 20: RES0: PMSWINC_EL0 is WO */
/* 21: RES0: PMCR_EL0 is WO */
FIELD(HDFGRTR_EL2, PMMIR_EL1, 22, 1)
FIELD(HDFGRTR_EL2, PMBLIMITR_EL1, 23, 1)
FIELD(HDFGRTR_EL2, PMBPTR_EL1, 24, 1)
FIELD(HDFGRTR_EL2, PMBSR_EL1, 25, 1)
FIELD(HDFGRTR_EL2, PMSCR_EL1, 26, 1)
FIELD(HDFGRTR_EL2, PMSEVFR_EL1, 27, 1)
FIELD(HDFGRTR_EL2, PMSFCR_EL1, 28, 1)
FIELD(HDFGRTR_EL2, PMSICR_EL1, 29, 1)
FIELD(HDFGRTR_EL2, PMSIDR_EL1, 30, 1)
FIELD(HDFGRTR_EL2, PMSIRR_EL1, 31, 1)
FIELD(HDFGRTR_EL2, PMSLATFR_EL1, 32, 1)
FIELD(HDFGRTR_EL2, TRC, 33, 1)
FIELD(HDFGRTR_EL2, TRCAUTHSTATUS, 34, 1)
FIELD(HDFGRTR_EL2, TRCAUXCTLR, 35, 1)
FIELD(HDFGRTR_EL2, TRCCLAIM, 36, 1)
FIELD(HDFGRTR_EL2, TRCCNTVRn, 37, 1)
/* 38, 39: RES0 */
FIELD(HDFGRTR_EL2, TRCID, 40, 1)
FIELD(HDFGRTR_EL2, TRCIMSPECN, 41, 1)
/* 42: RES0: TRCOSLAR is WO */
FIELD(HDFGRTR_EL2, TRCOSLSR, 43, 1)
FIELD(HDFGRTR_EL2, TRCPRGCTLR, 44, 1)
FIELD(HDFGRTR_EL2, TRCSEQSTR, 45, 1)
FIELD(HDFGRTR_EL2, TRCSSCSRN, 46, 1)
FIELD(HDFGRTR_EL2, TRCSTATR, 47, 1)
FIELD(HDFGRTR_EL2, TRCVICTLR, 48, 1)
/* 49: RES0: TRFCR_EL1 is WO */
FIELD(HDFGRTR_EL2, TRBBASER_EL1, 50, 1)
FIELD(HDFGRTR_EL2, TRBIDR_EL1, 51, 1)
FIELD(HDFGRTR_EL2, TRBLIMITR_EL1, 52, 1)
FIELD(HDFGRTR_EL2, TRBMAR_EL1, 53, 1)
FIELD(HDFGRTR_EL2, TRBPTR_EL1, 54, 1)
FIELD(HDFGRTR_EL2, TRBSR_EL1, 55, 1)
FIELD(HDFGRTR_EL2, TRBTRG_EL1, 56, 1)
FIELD(HDFGRTR_EL2, PMUSERENR_EL0, 57, 1)
FIELD(HDFGRTR_EL2, PMCEIDN_EL0, 58, 1)
FIELD(HDFGRTR_EL2, NBRBIDR, 59, 1)
FIELD(HDFGRTR_EL2, NBRBCTL, 60, 1)
FIELD(HDFGRTR_EL2, NBRBDATA, 61, 1)
FIELD(HDFGRTR_EL2, NPMSNEVFR_EL1, 62, 1)
FIELD(HDFGRTR_EL2, PMBIDR_EL1, 63, 1)

/*
 * These match HDFGRTR_EL2, but bits for RO registers are RES0.
 * A few bits are for WO registers, where the HDFGRTR_EL2 bit is RES0.
 */
FIELD(HDFGWTR_EL2, DBGBCRN_EL1, 0, 1)
FIELD(HDFGWTR_EL2, DBGBVRN_EL1, 1, 1)
FIELD(HDFGWTR_EL2, DBGWCRN_EL1, 2, 1)
FIELD(HDFGWTR_EL2, DBGWVRN_EL1, 3, 1)
FIELD(HDFGWTR_EL2, MDSCR_EL1, 4, 1)
FIELD(HDFGWTR_EL2, DBGCLAIM, 5, 1)
FIELD(HDFGWTR_EL2, DBGPRCR_EL1, 7, 1)
FIELD(HDFGWTR_EL2, OSLAR_EL1, 8, 1)
FIELD(HDFGWTR_EL2, OSLSR_EL1, 9, 1)
FIELD(HDFGWTR_EL2, OSECCR_EL1, 10, 1)
FIELD(HDFGWTR_EL2, OSDLR_EL1, 11, 1)
FIELD(HDFGWTR_EL2, PMEVCNTRN_EL0, 12, 1)
FIELD(HDFGWTR_EL2, PMEVTYPERN_EL0, 13, 1)
FIELD(HDFGWTR_EL2, PMCCFILTR_EL0, 14, 1)
FIELD(HDFGWTR_EL2, PMCCNTR_EL0, 15, 1)
FIELD(HDFGWTR_EL2, PMCNTEN, 16, 1)
FIELD(HDFGWTR_EL2, PMINTEN, 17, 1)
FIELD(HDFGWTR_EL2, PMOVS, 18, 1)
FIELD(HDFGWTR_EL2, PMSELR_EL0, 19, 1)
FIELD(HDFGWTR_EL2, PMSWINC_EL0, 20, 1)
FIELD(HDFGWTR_EL2, PMCR_EL0, 21, 1)
FIELD(HDFGWTR_EL2, PMBLIMITR_EL1, 23, 1)
FIELD(HDFGWTR_EL2, PMBPTR_EL1, 24, 1)
FIELD(HDFGWTR_EL2, PMBSR_EL1, 25, 1)
FIELD(HDFGWTR_EL2, PMSCR_EL1, 26, 1)
FIELD(HDFGWTR_EL2, PMSEVFR_EL1, 27, 1)
FIELD(HDFGWTR_EL2, PMSFCR_EL1, 28, 1)
FIELD(HDFGWTR_EL2, PMSICR_EL1, 29, 1)
FIELD(HDFGWTR_EL2, PMSIRR_EL1, 31, 1)
FIELD(HDFGWTR_EL2, PMSLATFR_EL1, 32, 1)
FIELD(HDFGWTR_EL2, TRC, 33, 1)
FIELD(HDFGWTR_EL2, TRCAUXCTLR, 35, 1)
FIELD(HDFGWTR_EL2, TRCCLAIM, 36, 1)
FIELD(HDFGWTR_EL2, TRCCNTVRn, 37, 1)
FIELD(HDFGWTR_EL2, TRCIMSPECN, 41, 1)
FIELD(HDFGWTR_EL2, TRCOSLAR, 42, 1)
FIELD(HDFGWTR_EL2, TRCPRGCTLR, 44, 1)
FIELD(HDFGWTR_EL2, TRCSEQSTR, 45, 1)
FIELD(HDFGWTR_EL2, TRCSSCSRN, 46, 1)
FIELD(HDFGWTR_EL2, TRCVICTLR, 48, 1)
FIELD(HDFGWTR_EL2, TRFCR_EL1, 49, 1)
FIELD(HDFGWTR_EL2, TRBBASER_EL1, 50, 1)
FIELD(HDFGWTR_EL2, TRBLIMITR_EL1, 52, 1)
FIELD(HDFGWTR_EL2, TRBMAR_EL1, 53, 1)
FIELD(HDFGWTR_EL2, TRBPTR_EL1, 54, 1)
FIELD(HDFGWTR_EL2, TRBSR_EL1, 55, 1)
FIELD(HDFGWTR_EL2, TRBTRG_EL1, 56, 1)
FIELD(HDFGWTR_EL2, PMUSERENR_EL0, 57, 1)
FIELD(HDFGWTR_EL2, NBRBCTL, 60, 1)
FIELD(HDFGWTR_EL2, NBRBDATA, 61, 1)
FIELD(HDFGWTR_EL2, NPMSNEVFR_EL1, 62, 1)

/* Which fine-grained trap bit register to check, if any */
FIELD(FGT, TYPE, 10, 3)
FIELD(FGT, REV, 9, 1) /* Is bit sense reversed? */
FIELD(FGT, IDX, 6, 3) /* Index within a uint64_t[] array */
FIELD(FGT, BITPOS, 0, 6) /* Bit position within the uint64_t */

/*
 * Macros to define FGT_##bitname enum constants to use in ARMCPRegInfo::fgt
 * fields. We assume for brevity's sake that there are no duplicated
 * bit names across the various FGT registers.
 */
#define DO_BIT(REG, BITNAME)                                    \
    FGT_##BITNAME = FGT_##REG | R_##REG##_EL2_##BITNAME##_SHIFT

/* Some bits have reversed sense, so 0 means trap and 1 means not */
#define DO_REV_BIT(REG, BITNAME)                                        \
    FGT_##BITNAME = FGT_##REG | FGT_REV | R_##REG##_EL2_##BITNAME##_SHIFT

typedef enum FGTBit {
    /*
     * These bits tell us which register arrays to use:
     * if FGT_R is set then reads are checked against fgt_read[];
     * if FGT_W is set then writes are checked against fgt_write[];
     * if FGT_EXEC is set then all accesses are checked against fgt_exec[].
     *
     * For almost all bits in the R/W register pairs, the bit exists in
     * both registers for a RW register, in HFGRTR/HDFGRTR for a RO register
     * with the corresponding HFGWTR/HDFGTWTR bit being RES0, and vice-versa
     * for a WO register. There are unfortunately a couple of exceptions
     * (PMCR_EL0, TRFCR_EL1) where the register being trapped is RW but
     * the FGT system only allows trapping of writes, not reads.
     *
     * Note that we arrange these bits so that a 0 FGTBit means "no trap".
     */
    FGT_R = 1 << R_FGT_TYPE_SHIFT,
    FGT_W = 2 << R_FGT_TYPE_SHIFT,
    FGT_EXEC = 4 << R_FGT_TYPE_SHIFT,
    FGT_RW = FGT_R | FGT_W,
    /* Bit to identify whether trap bit is reversed sense */
    FGT_REV = R_FGT_REV_MASK,

    /*
     * If a bit exists in HFGRTR/HDFGRTR then either the register being
     * trapped is RO or the bit also exists in HFGWTR/HDFGWTR, so we either
     * want to trap for both reads and writes or else it's harmless to mark
     * it as trap-on-writes.
     * If a bit exists only in HFGWTR/HDFGWTR then either the register being
     * trapped is WO, or else it is one of the two oddball special cases
     * which are RW but have only a write trap. We mark these as only
     * FGT_W so we get the right behaviour for those special cases.
     * (If a bit was added in future that provided only a read trap for an
     * RW register we'd need to do something special to get the FGT_R bit
     * only. But this seems unlikely to happen.)
     *
     * So for the DO_BIT/DO_REV_BIT macros: use FGT_HFGRTR/FGT_HDFGRTR if
     * the bit exists in that register. Otherwise use FGT_HFGWTR/FGT_HDFGWTR.
     */
    FGT_HFGRTR = FGT_RW | (FGTREG_HFGRTR << R_FGT_IDX_SHIFT),
    FGT_HFGWTR = FGT_W | (FGTREG_HFGWTR << R_FGT_IDX_SHIFT),
    FGT_HDFGRTR = FGT_RW | (FGTREG_HDFGRTR << R_FGT_IDX_SHIFT),
    FGT_HDFGWTR = FGT_W | (FGTREG_HDFGWTR << R_FGT_IDX_SHIFT),
    FGT_HFGITR = FGT_EXEC | (FGTREG_HFGITR << R_FGT_IDX_SHIFT),

    /* Trap bits in HFGRTR_EL2 / HFGWTR_EL2, starting from bit 0. */
    DO_BIT(HFGRTR, AFSR0_EL1),
    DO_BIT(HFGRTR, AFSR1_EL1),
    DO_BIT(HFGRTR, AIDR_EL1),
    DO_BIT(HFGRTR, AMAIR_EL1),
    DO_BIT(HFGRTR, APDAKEY),
    DO_BIT(HFGRTR, APDBKEY),
    DO_BIT(HFGRTR, APGAKEY),
    DO_BIT(HFGRTR, APIAKEY),
    DO_BIT(HFGRTR, APIBKEY),
    DO_BIT(HFGRTR, CCSIDR_EL1),
    DO_BIT(HFGRTR, CLIDR_EL1),
    DO_BIT(HFGRTR, CONTEXTIDR_EL1),
    DO_BIT(HFGRTR, CPACR_EL1),
    DO_BIT(HFGRTR, CSSELR_EL1),
    DO_BIT(HFGRTR, CTR_EL0),
    DO_BIT(HFGRTR, DCZID_EL0),
    DO_BIT(HFGRTR, ESR_EL1),
    DO_BIT(HFGRTR, FAR_EL1),
    DO_BIT(HFGRTR, ISR_EL1),
    DO_BIT(HFGRTR, LORC_EL1),
    DO_BIT(HFGRTR, LOREA_EL1),
    DO_BIT(HFGRTR, LORID_EL1),
    DO_BIT(HFGRTR, LORN_EL1),
    DO_BIT(HFGRTR, LORSA_EL1),
    DO_BIT(HFGRTR, MAIR_EL1),
    DO_BIT(HFGRTR, MIDR_EL1),
    DO_BIT(HFGRTR, MPIDR_EL1),
    DO_BIT(HFGRTR, PAR_EL1),
    DO_BIT(HFGRTR, REVIDR_EL1),
    DO_BIT(HFGRTR, SCTLR_EL1),
    DO_BIT(HFGRTR, SCXTNUM_EL1),
    DO_BIT(HFGRTR, SCXTNUM_EL0),
    DO_BIT(HFGRTR, TCR_EL1),
    DO_BIT(HFGRTR, TPIDR_EL1),
    DO_BIT(HFGRTR, TPIDRRO_EL0),
    DO_BIT(HFGRTR, TPIDR_EL0),
    DO_BIT(HFGRTR, TTBR0_EL1),
    DO_BIT(HFGRTR, TTBR1_EL1),
    DO_BIT(HFGRTR, VBAR_EL1),
    DO_BIT(HFGRTR, ICC_IGRPENN_EL1),
    DO_BIT(HFGRTR, ERRIDR_EL1),
    DO_REV_BIT(HFGRTR, NSMPRI_EL1),
    DO_REV_BIT(HFGRTR, NTPIDR2_EL0),

    /* Trap bits in HDFGRTR_EL2 / HDFGWTR_EL2, starting from bit 0. */
    DO_BIT(HDFGRTR, DBGBCRN_EL1),
    DO_BIT(HDFGRTR, DBGBVRN_EL1),
    DO_BIT(HDFGRTR, DBGWCRN_EL1),
    DO_BIT(HDFGRTR, DBGWVRN_EL1),
    DO_BIT(HDFGRTR, MDSCR_EL1),
    DO_BIT(HDFGRTR, DBGCLAIM),
    DO_BIT(HDFGWTR, OSLAR_EL1),
    DO_BIT(HDFGRTR, OSLSR_EL1),
    DO_BIT(HDFGRTR, OSECCR_EL1),
    DO_BIT(HDFGRTR, OSDLR_EL1),
    DO_BIT(HDFGRTR, PMEVCNTRN_EL0),
    DO_BIT(HDFGRTR, PMEVTYPERN_EL0),
    DO_BIT(HDFGRTR, PMCCFILTR_EL0),
    DO_BIT(HDFGRTR, PMCCNTR_EL0),
    DO_BIT(HDFGRTR, PMCNTEN),
    DO_BIT(HDFGRTR, PMINTEN),
    DO_BIT(HDFGRTR, PMOVS),
    DO_BIT(HDFGRTR, PMSELR_EL0),
    DO_BIT(HDFGWTR, PMSWINC_EL0),
    DO_BIT(HDFGWTR, PMCR_EL0),
    DO_BIT(HDFGRTR, PMMIR_EL1),
    DO_BIT(HDFGRTR, PMCEIDN_EL0),

    /* Trap bits in HFGITR_EL2, starting from bit 0 */
    DO_BIT(HFGITR, ICIALLUIS),
    DO_BIT(HFGITR, ICIALLU),
    DO_BIT(HFGITR, ICIVAU),
    DO_BIT(HFGITR, DCIVAC),
    DO_BIT(HFGITR, DCISW),
    DO_BIT(HFGITR, DCCSW),
    DO_BIT(HFGITR, DCCISW),
    DO_BIT(HFGITR, DCCVAU),
    DO_BIT(HFGITR, DCCVAP),
    DO_BIT(HFGITR, DCCVADP),
    DO_BIT(HFGITR, DCCIVAC),
    DO_BIT(HFGITR, DCZVA),
    DO_BIT(HFGITR, ATS1E1R),
    DO_BIT(HFGITR, ATS1E1W),
    DO_BIT(HFGITR, ATS1E0R),
    DO_BIT(HFGITR, ATS1E0W),
    DO_BIT(HFGITR, ATS1E1RP),
    DO_BIT(HFGITR, ATS1E1WP),
    DO_BIT(HFGITR, TLBIVMALLE1OS),
    DO_BIT(HFGITR, TLBIVAE1OS),
    DO_BIT(HFGITR, TLBIASIDE1OS),
    DO_BIT(HFGITR, TLBIVAAE1OS),
    DO_BIT(HFGITR, TLBIVALE1OS),
    DO_BIT(HFGITR, TLBIVAALE1OS),
    DO_BIT(HFGITR, TLBIRVAE1OS),
    DO_BIT(HFGITR, TLBIRVAAE1OS),
    DO_BIT(HFGITR, TLBIRVALE1OS),
    DO_BIT(HFGITR, TLBIRVAALE1OS),
    DO_BIT(HFGITR, TLBIVMALLE1IS),
    DO_BIT(HFGITR, TLBIVAE1IS),
    DO_BIT(HFGITR, TLBIASIDE1IS),
    DO_BIT(HFGITR, TLBIVAAE1IS),
    DO_BIT(HFGITR, TLBIVALE1IS),
    DO_BIT(HFGITR, TLBIVAALE1IS),
    DO_BIT(HFGITR, TLBIRVAE1IS),
    DO_BIT(HFGITR, TLBIRVAAE1IS),
    DO_BIT(HFGITR, TLBIRVALE1IS),
    DO_BIT(HFGITR, TLBIRVAALE1IS),
    DO_BIT(HFGITR, TLBIRVAE1),
    DO_BIT(HFGITR, TLBIRVAAE1),
    DO_BIT(HFGITR, TLBIRVALE1),
    DO_BIT(HFGITR, TLBIRVAALE1),
    DO_BIT(HFGITR, TLBIVMALLE1),
    DO_BIT(HFGITR, TLBIVAE1),
    DO_BIT(HFGITR, TLBIASIDE1),
    DO_BIT(HFGITR, TLBIVAAE1),
    DO_BIT(HFGITR, TLBIVALE1),
    DO_BIT(HFGITR, TLBIVAALE1),
    DO_BIT(HFGITR, CFPRCTX),
    DO_BIT(HFGITR, DVPRCTX),
    DO_BIT(HFGITR, CPPRCTX),
    DO_BIT(HFGITR, DCCVAC),
} FGTBit;

#undef DO_BIT
#undef DO_REV_BIT

typedef struct ARMCPRegInfo ARMCPRegInfo;

/*
 * Access functions for coprocessor registers. These cannot fail and
 * may not raise exceptions.
 */
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
                       uint64_t value);
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env,
                                  const ARMCPRegInfo *opaque,
                                  bool isread);
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);

#define CP_ANY 0xff

/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
    /* Name of register (useful mainly for debugging, need not be unique) */
    const char *name;
    /*
     * Location of register: coprocessor number and (crn,crm,opc1,opc2)
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
     * will be decoded to this register. The register read and write
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
     * used by the program, so it is possible to register a wildcard and
     * then behave differently on read/write if necessary.
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
     * must both be zero.
     * For AArch64-visible registers, opc0 is also used.
     * Since there are no "coprocessors" in AArch64, cp is purely used as a
     * way to distinguish (for KVM's benefit) guest-visible system registers
     * from demuxed ones provided to preserve the "no side effects on
     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
     * visible (to match KVM's encoding); cp==0 will be converted to
     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
     */
    uint8_t cp;
    uint8_t crn;
    uint8_t crm;
    uint8_t opc0;
    uint8_t opc1;
    uint8_t opc2;
    /* Execution state in which this register is visible: ARM_CP_STATE_* */
    CPState state;
    /* Register type: ARM_CP_* bits/values */
    int type;
    /* Access rights: PL*_[RW] */
    CPAccessRights access;
    /* Security state: ARM_CP_SECSTATE_* bits/values */
    CPSecureState secure;
    /*
     * Which fine-grained trap register bit to check, if any. This
     * value encodes both the trap register and bit within it.
     */
    FGTBit fgt;
    /*
     * The opaque pointer passed to define_arm_cp_regs_with_opaque() when
     * this register was defined: can be used to hand data through to the
     * register read/write functions, since they are passed the ARMCPRegInfo*.
     */
    void *opaque;
    /*
     * Value of this register, if it is ARM_CP_CONST. Otherwise, if
     * fieldoffset is non-zero, the reset value of the register.
     */
    uint64_t resetvalue;
    /*
     * Offset of the field in CPUARMState for this register.
     * This is not needed if either:
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
     *  2. both readfn and writefn are specified
     */
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */

    /*
     * Offsets of the secure and non-secure fields in CPUARMState for the
     * register if it is banked.  These fields are only used during the static
     * registration of a register.  During hashing the bank associated
     * with a given security state is copied to fieldoffset which is used from
     * there on out.
     *
     * It is expected that register definitions use either fieldoffset or
     * bank_fieldoffsets in the definition but not both.  It is also expected
     * that both bank offsets are set when defining a banked register.  This
     * use indicates that a register is banked.
     */
    ptrdiff_t bank_fieldoffsets[2];

    /*
     * Function for making any access checks for this register in addition to
     * those specified by the 'access' permissions bits. If NULL, no extra
     * checks required. The access check is performed at runtime, not at
     * translate time.
     */
    CPAccessFn *accessfn;
    /*
     * Function for handling reads of this register. If NULL, then reads
     * will be done by loading from the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPReadFn *readfn;
    /*
     * Function for handling writes of this register. If NULL, then writes
     * will be done by writing to the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPWriteFn *writefn;
    /*
     * Function for doing a "raw" read; used when we need to copy
     * coprocessor state to the kernel for KVM or out for
     * migration. This only needs to be provided if there is also a
     * readfn and it has side effects (for instance clear-on-read bits).
     */
    CPReadFn *raw_readfn;
    /*
     * Function for doing a "raw" write; used when we need to copy KVM
     * kernel coprocessor state into userspace, or for inbound
     * migration. This only needs to be provided if there is also a
     * writefn and it masks out "unwritable" bits or has write-one-to-clear
     * or similar behaviour.
     */
    CPWriteFn *raw_writefn;
    /*
     * Function for resetting the register. If NULL, then reset will be done
     * by writing resetvalue to the field specified in fieldoffset. If
     * fieldoffset is 0 then no reset will be done.
     */
    CPResetFn *resetfn;

    /*
     * "Original" readfn, writefn, accessfn.
     * For ARMv8.1-VHE register aliases, we overwrite the read/write
     * accessor functions of various EL1/EL0 to perform the runtime
     * check for which sysreg should actually be modified, and then
     * forwards the operation.  Before overwriting the accessors,
     * the original function is copied here, so that accesses that
     * really do go to the EL1/EL0 version proceed normally.
     * (The corresponding EL2 register is linked via opaque.)
     */
    CPReadFn *orig_readfn;
    CPWriteFn *orig_writefn;
    CPAccessFn *orig_accessfn;
};

/*
 * Macros which are lvalues for the field in CPUARMState for the
 * ARMCPRegInfo *ri.
 */
#define CPREG_FIELD32(env, ri) \
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))

void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg,
                                       void *opaque);

static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
}

void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
                                        void *opaque, size_t len);

#define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE)               \
    do {                                                                \
        QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
        define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE,           \
                                           ARRAY_SIZE(REGS));           \
    } while (0)

#define define_arm_cp_regs(CPU, REGS) \
    define_arm_cp_regs_with_opaque(CPU, REGS, NULL)

const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);

/*
 * Definition of an ARM co-processor register as viewed from
 * userspace. This is used for presenting sanitised versions of
 * registers to userspace when emulating the Linux AArch64 CPU
 * ID/feature ABI (advertised as HWCAP_CPUID).
 */
typedef struct ARMCPRegUserSpaceInfo {
    /* Name of register */
    const char *name;

    /* Is the name actually a glob pattern */
    bool is_glob;

    /* Only some bits are exported to user space */
    uint64_t exported_bits;

    /* Fixed bits are applied after the mask */
    uint64_t fixed_bits;
} ARMCPRegUserSpaceInfo;

void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
                                 const ARMCPRegUserSpaceInfo *mods,
                                 size_t mods_len);

#define modify_arm_cp_regs(REGS, MODS)                                  \
    do {                                                                \
        QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0);                       \
        QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0);                       \
        modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS),             \
                                    MODS, ARRAY_SIZE(MODS));            \
    } while (0)

/* CPWriteFn that can be used to implement writes-ignored behaviour */
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value);
/* CPReadFn that can be used for read-as-zero behaviour */
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);

/* CPWriteFn that just writes the value to ri->fieldoffset */
void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value);

/*
 * CPResetFn that does nothing, for use if no reset is required even
 * if fieldoffset is non zero.
 */
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);

/*
 * Return true if this reginfo struct's field in the cpu state struct
 * is 64 bits wide.
 */
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}

static inline bool cp_access_ok(int current_el,
                                const ARMCPRegInfo *ri, int isread)
{
    return (ri->access >> ((current_el * 2) + isread)) & 1;
}

/* Raw read of a coprocessor register (as needed for migration, etc) */
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);

/*
 * Return true if the cp register encoding is in the "feature ID space" as
 * defined by FEAT_IDST (and thus should be reported with ER_ELx.EC
 * as EC_SYSTEMREGISTERTRAP rather than EC_UNCATEGORIZED).
 */
static inline bool arm_cpreg_encoding_in_idspace(uint8_t opc0, uint8_t opc1,
                                                 uint8_t opc2,
                                                 uint8_t crn, uint8_t crm)
{
    return opc0 == 3 && (opc1 == 0 || opc1 == 1 || opc1 == 3) &&
        crn == 0 && crm < 8;
}

/*
 * As arm_cpreg_encoding_in_idspace(), but take the encoding from an
 * ARMCPRegInfo.
 */
static inline bool arm_cpreg_in_idspace(const ARMCPRegInfo *ri)
{
    return ri->state == ARM_CP_STATE_AA64 &&
        arm_cpreg_encoding_in_idspace(ri->opc0, ri->opc1, ri->opc2,
                                      ri->crn, ri->crm);
}

#ifdef CONFIG_USER_ONLY
static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
#else
void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
#endif

CPAccessResult access_tvm_trvm(CPUARMState *, const ARMCPRegInfo *, bool);

/**
 * arm_cpreg_trap_in_nv: Return true if cpreg traps in nested virtualization
 *
 * Return true if this cpreg is one which should be trapped to EL2 if
 * it is executed at EL1 when nested virtualization is enabled via HCR_EL2.NV.
 */
static inline bool arm_cpreg_traps_in_nv(const ARMCPRegInfo *ri)
{
    /*
     * The Arm ARM defines the registers to be trapped in terms of
     * their names (I_TZTZL). However the underlying principle is "if
     * it would UNDEF at EL1 but work at EL2 then it should trap", and
     * the way the encoding of sysregs and system instructions is done
     * means that the right set of registers is exactly those where
     * the opc1 field is 4 or 5. (You can see this also in the assert
     * we do that the opc1 field and the permissions mask line up in
     * define_one_arm_cp_reg_with_opaque().)
     * Checking the opc1 field is easier for us and avoids the problem
     * that we do not consistently use the right architectural names
     * for all sysregs, since we treat the name field as largely for debug.
     *
     * However we do this check, it is going to be at least potentially
     * fragile to future new sysregs, but this seems the least likely
     * to break.
     *
     * In particular, note that the released sysreg XML defines that
     * the FEAT_MEC sysregs and instructions do not follow this FEAT_NV
     * trapping rule, so we will need to add an ARM_CP_* flag to indicate
     * "register does not trap on NV" to handle those if/when we implement
     * FEAT_MEC.
     */
    return ri->opc1 == 4 || ri->opc1 == 5;
}

#endif /* TARGET_ARM_CPREGS_H */