aboutsummaryrefslogtreecommitdiff
path: root/target-sparc/op_helper.c
blob: 043a849666646c30c8414e6634f8b12afe9eecf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
#include "exec.h"

//#define DEBUG_PCALL
//#define DEBUG_MMU
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED

void raise_exception(int tt)
{
    env->exception_index = tt;
    cpu_loop_exit();
}

void check_ieee_exceptions()
{
     T0 = get_float_exception_flags(&env->fp_status);
     if (T0)
     {
	/* Copy IEEE 754 flags into FSR */
	if (T0 & float_flag_invalid)
	    env->fsr |= FSR_NVC;
	if (T0 & float_flag_overflow)
	    env->fsr |= FSR_OFC;
	if (T0 & float_flag_underflow)
	    env->fsr |= FSR_UFC;
	if (T0 & float_flag_divbyzero)
	    env->fsr |= FSR_DZC;
	if (T0 & float_flag_inexact)
	    env->fsr |= FSR_NXC;

	if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
	{
	    /* Unmasked exception, generate a trap */
	    env->fsr |= FSR_FTT_IEEE_EXCP;
	    raise_exception(TT_FP_EXCP);
	}
	else
	{
	    /* Accumulate exceptions */
	    env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
	}
     }
}

#ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
    check_ieee_exceptions();
}

void do_fitod(void)
{
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
}
#endif

void do_fabss(void)
{
    FT0 = float32_abs(FT1);
}

#ifdef TARGET_SPARC64
void do_fabsd(void)
{
    DT0 = float64_abs(DT1);
}
#endif

void do_fsqrts(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = float32_sqrt(FT1, &env->fp_status);
    check_ieee_exceptions();
}

void do_fsqrtd(void)
{
    set_float_exception_flags(0, &env->fp_status);
    DT0 = float64_sqrt(DT1, &env->fp_status);
    check_ieee_exceptions();
}

#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
    void glue(do_, name) (void)                                         \
    {                                                                   \
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
        case float_relation_unordered:                                  \
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
                env->fsr |= T0;                                         \
                env->fsr |= FSR_NVC;                                    \
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
                raise_exception(TT_FP_EXCP);                            \
            } else {                                                    \
                env->fsr |= FSR_NVA;                                    \
            }                                                           \
            break;                                                      \
        case float_relation_less:                                       \
            T0 = FSR_FCC0 << FS;                                        \
            break;                                                      \
        case float_relation_greater:                                    \
            T0 = FSR_FCC1 << FS;                                        \
            break;                                                      \
        default:                                                        \
            T0 = 0;                                                     \
            break;                                                      \
        }                                                               \
        env->fsr |= T0;                                                 \
    }

GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);

GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);

#ifdef TARGET_SPARC64
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);

GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);

GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);

GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);

GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);

GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
#endif

#if defined(CONFIG_USER_ONLY)
void helper_ld_asi(int asi, int size, int sign)
{
}

void helper_st_asi(int asi, int size, int sign)
{
}
#else
#ifndef TARGET_SPARC64
void helper_ld_asi(int asi, int size, int sign)
{
    uint32_t ret = 0;

    switch (asi) {
    case 2: /* SuperSparc MXCC registers */
        break;
    case 3: /* MMU probe */
	{
	    int mmulev;

	    mmulev = (T0 >> 8) & 15;
	    if (mmulev > 4)
		ret = 0;
	    else {
		ret = mmu_probe(env, T0, mmulev);
		//bswap32s(&ret);
	    }
#ifdef DEBUG_MMU
	    printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
#endif
	}
	break;
    case 4: /* read MMU regs */
	{
	    int reg = (T0 >> 8) & 0xf;

	    ret = env->mmuregs[reg];
	    if (reg == 3) /* Fault status cleared on read */
		env->mmuregs[reg] = 0;
#ifdef DEBUG_MMU
	    printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
#endif
	}
	break;
    case 9: /* Supervisor code access */
        switch(size) {
        case 1:
            ret = ldub_code(T0);
            break;
        case 2:
            ret = lduw_code(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_code(T0 & ~3);
            break;
        case 8:
            ret = ldl_code(T0 & ~3);
            T0 = ldl_code((T0 + 4) & ~3);
            break;
        }
        break;
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
        break;
    case 0x20: /* MMU passthrough */
        switch(size) {
        case 1:
            ret = ldub_phys(T0);
            break;
        case 2:
            ret = lduw_phys(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_phys(T0 & ~3);
            break;
        case 8:
	    ret = ldl_phys(T0 & ~3);
	    T0 = ldl_phys((T0 + 4) & ~3);
	    break;
        }
	break;
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
        switch(size) {
        case 1:
            ret = ldub_phys((target_phys_addr_t)T0
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
            break;
        case 2:
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
            break;
        default:
        case 4:
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
            break;
        case 8:
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
            T0 = ldl_phys((target_phys_addr_t)((T0 + 4) & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
	    break;
        }
	break;
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
    default:
        do_unassigned_access(T0, 0, 0, 1);
	ret = 0;
	break;
    }
    T1 = ret;
}

void helper_st_asi(int asi, int size, int sign)
{
    switch(asi) {
    case 2: /* SuperSparc MXCC registers */
        break;
    case 3: /* MMU flush */
	{
	    int mmulev;

	    mmulev = (T0 >> 8) & 15;
#ifdef DEBUG_MMU
	    printf("mmu flush level %d\n", mmulev);
#endif
	    switch (mmulev) {
	    case 0: // flush page
		tlb_flush_page(env, T0 & 0xfffff000);
		break;
	    case 1: // flush segment (256k)
	    case 2: // flush region (16M)
	    case 3: // flush context (4G)
	    case 4: // flush entire
		tlb_flush(env, 1);
		break;
	    default:
		break;
	    }
#ifdef DEBUG_MMU
	    dump_mmu(env);
#endif
	    return;
	}
    case 4: /* write MMU regs */
	{
	    int reg = (T0 >> 8) & 0xf;
	    uint32_t oldreg;

	    oldreg = env->mmuregs[reg];
            switch(reg) {
            case 0:
		env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
		env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
		// Mappings generated during no-fault mode or MMU
		// disabled mode are invalid in normal mode
                if (oldreg != env->mmuregs[reg])
                    tlb_flush(env, 1);
                break;
            case 2:
		env->mmuregs[reg] = T1;
                if (oldreg != env->mmuregs[reg]) {
                    /* we flush when the MMU context changes because
                       QEMU has no MMU context support */
                    tlb_flush(env, 1);
                }
                break;
            case 3:
            case 4:
                break;
            default:
		env->mmuregs[reg] = T1;
                break;
            }
#ifdef DEBUG_MMU
            if (oldreg != env->mmuregs[reg]) {
                printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
            }
	    dump_mmu(env);
#endif
	    return;
	}
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
    case 0x10: /* I/D-cache flush page */
    case 0x11: /* I/D-cache flush segment */
    case 0x12: /* I/D-cache flush region */
    case 0x13: /* I/D-cache flush context */
    case 0x14: /* I/D-cache flush user */
        break;
    case 0x17: /* Block copy, sta access */
	{
	    // value (T1) = src
	    // address (T0) = dst
	    // copy 32 bytes
            unsigned int i;
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;

            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
                temp = ldl_kernel(src);
                stl_kernel(dst, temp);
            }
	}
	return;
    case 0x1f: /* Block fill, stda access */
	{
	    // value (T1, T2)
	    // address (T0) = dst
	    // fill 32 bytes
            unsigned int i;
            uint32_t dst = T0 & 7;
            uint64_t val;

            val = (((uint64_t)T1) << 32) | T2;

            for (i = 0; i < 32; i += 8, dst += 8)
                stq_kernel(dst, val);
	}
	return;
    case 0x20: /* MMU passthrough */
	{
            switch(size) {
            case 1:
                stb_phys(T0, T1);
                break;
            case 2:
                stw_phys(T0 & ~1, T1);
                break;
            case 4:
            default:
                stl_phys(T0 & ~3, T1);
                break;
            case 8:
                stl_phys(T0 & ~3, T1);
                stl_phys((T0 + 4) & ~3, T2);
                break;
            }
	}
	return;
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
	{
            switch(size) {
            case 1:
                stb_phys((target_phys_addr_t)T0
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            case 2:
                stw_phys((target_phys_addr_t)(T0 & ~1)
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            case 4:
            default:
                stl_phys((target_phys_addr_t)(T0 & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            case 8:
                stl_phys((target_phys_addr_t)(T0 & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                stl_phys((target_phys_addr_t)((T0 + 4) & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            }
	}
	return;
    case 0x31: /* Ross RT620 I-cache flush */
    case 0x36: /* I-cache flash clear */
    case 0x37: /* D-cache flash clear */
        break;
    case 9: /* Supervisor code access, XXX */
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
    default:
        do_unassigned_access(T0, 1, 0, 1);
	return;
    }
}

#else

void helper_ld_asi(int asi, int size, int sign)
{
    uint64_t ret = 0;

    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
	raise_exception(TT_PRIV_ACT);

    switch (asi) {
    case 0x14: // Bypass
    case 0x15: // Bypass, non-cacheable
	{
            switch(size) {
            case 1:
                ret = ldub_phys(T0);
                break;
            case 2:
                ret = lduw_phys(T0 & ~1);
                break;
            case 4:
                ret = ldl_phys(T0 & ~3);
                break;
            default:
            case 8:
                ret = ldq_phys(T0 & ~7);
                break;
            }
	    break;
	}
    case 0x04: // Nucleus
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x10: // As if user primary
    case 0x11: // As if user secondary
    case 0x18: // As if user primary LE
    case 0x19: // As if user secondary LE
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
    case 0x24: // Nucleus quad LDD 128 bit atomic
    case 0x2c: // Nucleus quad LDD 128 bit atomic
    case 0x4a: // UPA config
    case 0x82: // Primary no-fault
    case 0x83: // Secondary no-fault
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
    case 0x8a: // Primary no-fault LE
    case 0x8b: // Secondary no-fault LE
	// XXX
	break;
    case 0x45: // LSU
	ret = env->lsu;
	break;
    case 0x50: // I-MMU regs
	{
	    int reg = (T0 >> 3) & 0xf;

	    ret = env->immuregs[reg];
	    break;
	}
    case 0x51: // I-MMU 8k TSB pointer
    case 0x52: // I-MMU 64k TSB pointer
    case 0x55: // I-MMU data access
	// XXX
	break;
    case 0x56: // I-MMU tag read
	{
	    unsigned int i;

	    for (i = 0; i < 64; i++) {
		// Valid, ctx match, vaddr match
		if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
		    env->itlb_tag[i] == T0) {
		    ret = env->itlb_tag[i];
		    break;
		}
	    }
	    break;
	}
    case 0x58: // D-MMU regs
	{
	    int reg = (T0 >> 3) & 0xf;

	    ret = env->dmmuregs[reg];
	    break;
	}
    case 0x5e: // D-MMU tag read
	{
	    unsigned int i;

	    for (i = 0; i < 64; i++) {
		// Valid, ctx match, vaddr match
		if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
		    env->dtlb_tag[i] == T0) {
		    ret = env->dtlb_tag[i];
		    break;
		}
	    }
	    break;
	}
    case 0x59: // D-MMU 8k TSB pointer
    case 0x5a: // D-MMU 64k TSB pointer
    case 0x5b: // D-MMU data pointer
    case 0x5d: // D-MMU data access
    case 0x48: // Interrupt dispatch, RO
    case 0x49: // Interrupt data receive
    case 0x7f: // Incoming interrupt vector, RO
	// XXX
	break;
    case 0x54: // I-MMU data in, WO
    case 0x57: // I-MMU demap, WO
    case 0x5c: // D-MMU data in, WO
    case 0x5f: // D-MMU demap, WO
    case 0x77: // Interrupt vector, WO
    default:
        do_unassigned_access(T0, 0, 0, 1);
	ret = 0;
	break;
    }
    T1 = ret;
}

void helper_st_asi(int asi, int size, int sign)
{
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
	raise_exception(TT_PRIV_ACT);

    switch(asi) {
    case 0x14: // Bypass
    case 0x15: // Bypass, non-cacheable
	{
            switch(size) {
            case 1:
                stb_phys(T0, T1);
                break;
            case 2:
                stw_phys(T0 & ~1, T1);
                break;
            case 4:
                stl_phys(T0 & ~3, T1);
                break;
            case 8:
            default:
                stq_phys(T0 & ~7, T1);
                break;
            }
	}
	return;
    case 0x04: // Nucleus
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x10: // As if user primary
    case 0x11: // As if user secondary
    case 0x18: // As if user primary LE
    case 0x19: // As if user secondary LE
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
    case 0x24: // Nucleus quad LDD 128 bit atomic
    case 0x2c: // Nucleus quad LDD 128 bit atomic
    case 0x4a: // UPA config
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
	// XXX
	return;
    case 0x45: // LSU
	{
	    uint64_t oldreg;

	    oldreg = env->lsu;
	    env->lsu = T1 & (DMMU_E | IMMU_E);
	    // Mappings generated during D/I MMU disabled mode are
	    // invalid in normal mode
	    if (oldreg != env->lsu) {
#ifdef DEBUG_MMU
                printf("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
		dump_mmu(env);
#endif
		tlb_flush(env, 1);
	    }
	    return;
	}
    case 0x50: // I-MMU regs
	{
	    int reg = (T0 >> 3) & 0xf;
	    uint64_t oldreg;

	    oldreg = env->immuregs[reg];
            switch(reg) {
            case 0: // RO
            case 4:
                return;
            case 1: // Not in I-MMU
            case 2:
            case 7:
            case 8:
                return;
            case 3: // SFSR
		if ((T1 & 1) == 0)
		    T1 = 0; // Clear SFSR
                break;
            case 5: // TSB access
            case 6: // Tag access
            default:
                break;
            }
	    env->immuregs[reg] = T1;
#ifdef DEBUG_MMU
            if (oldreg != env->immuregs[reg]) {
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
            }
	    dump_mmu(env);
#endif
	    return;
	}
    case 0x54: // I-MMU data in
	{
	    unsigned int i;

	    // Try finding an invalid entry
	    for (i = 0; i < 64; i++) {
		if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
		    env->itlb_tag[i] = env->immuregs[6];
		    env->itlb_tte[i] = T1;
		    return;
		}
	    }
	    // Try finding an unlocked entry
	    for (i = 0; i < 64; i++) {
		if ((env->itlb_tte[i] & 0x40) == 0) {
		    env->itlb_tag[i] = env->immuregs[6];
		    env->itlb_tte[i] = T1;
		    return;
		}
	    }
	    // error state?
	    return;
	}
    case 0x55: // I-MMU data access
	{
	    unsigned int i = (T0 >> 3) & 0x3f;

	    env->itlb_tag[i] = env->immuregs[6];
	    env->itlb_tte[i] = T1;
	    return;
	}
    case 0x57: // I-MMU demap
	// XXX
	return;
    case 0x58: // D-MMU regs
	{
	    int reg = (T0 >> 3) & 0xf;
	    uint64_t oldreg;

	    oldreg = env->dmmuregs[reg];
            switch(reg) {
            case 0: // RO
            case 4:
                return;
            case 3: // SFSR
		if ((T1 & 1) == 0) {
		    T1 = 0; // Clear SFSR, Fault address
		    env->dmmuregs[4] = 0;
		}
		env->dmmuregs[reg] = T1;
                break;
            case 1: // Primary context
            case 2: // Secondary context
            case 5: // TSB access
            case 6: // Tag access
            case 7: // Virtual Watchpoint
            case 8: // Physical Watchpoint
            default:
                break;
            }
	    env->dmmuregs[reg] = T1;
#ifdef DEBUG_MMU
            if (oldreg != env->dmmuregs[reg]) {
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
            }
	    dump_mmu(env);
#endif
	    return;
	}
    case 0x5c: // D-MMU data in
	{
	    unsigned int i;

	    // Try finding an invalid entry
	    for (i = 0; i < 64; i++) {
		if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
		    env->dtlb_tag[i] = env->dmmuregs[6];
		    env->dtlb_tte[i] = T1;
		    return;
		}
	    }
	    // Try finding an unlocked entry
	    for (i = 0; i < 64; i++) {
		if ((env->dtlb_tte[i] & 0x40) == 0) {
		    env->dtlb_tag[i] = env->dmmuregs[6];
		    env->dtlb_tte[i] = T1;
		    return;
		}
	    }
	    // error state?
	    return;
	}
    case 0x5d: // D-MMU data access
	{
	    unsigned int i = (T0 >> 3) & 0x3f;

	    env->dtlb_tag[i] = env->dmmuregs[6];
	    env->dtlb_tte[i] = T1;
	    return;
	}
    case 0x5f: // D-MMU demap
    case 0x49: // Interrupt data receive
	// XXX
	return;
    case 0x51: // I-MMU 8k TSB pointer, RO
    case 0x52: // I-MMU 64k TSB pointer, RO
    case 0x56: // I-MMU tag read, RO
    case 0x59: // D-MMU 8k TSB pointer, RO
    case 0x5a: // D-MMU 64k TSB pointer, RO
    case 0x5b: // D-MMU data pointer, RO
    case 0x5e: // D-MMU tag read, RO
    case 0x48: // Interrupt dispatch, RO
    case 0x7f: // Incoming interrupt vector, RO
    case 0x82: // Primary no-fault, RO
    case 0x83: // Secondary no-fault, RO
    case 0x8a: // Primary no-fault LE, RO
    case 0x8b: // Secondary no-fault LE, RO
    default:
        do_unassigned_access(T0, 1, 0, 1);
	return;
    }
}
#endif
#endif /* !CONFIG_USER_ONLY */

#ifndef TARGET_SPARC64
void helper_rett()
{
    unsigned int cwp;

    if (env->psret == 1)
        raise_exception(TT_ILL_INSN);

    env->psret = 1;
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
    if (env->wim & (1 << cwp)) {
        raise_exception(TT_WIN_UNF);
    }
    set_cwp(cwp);
    env->psrs = env->psrps;
}
#endif

void helper_ldfsr(void)
{
    int rnd_mode;
    switch (env->fsr & FSR_RD_MASK) {
    case FSR_RD_NEAREST:
        rnd_mode = float_round_nearest_even;
	break;
    default:
    case FSR_RD_ZERO:
        rnd_mode = float_round_to_zero;
	break;
    case FSR_RD_POS:
        rnd_mode = float_round_up;
	break;
    case FSR_RD_NEG:
        rnd_mode = float_round_down;
	break;
    }
    set_float_rounding_mode(rnd_mode, &env->fp_status);
}

void helper_debug()
{
    env->exception_index = EXCP_DEBUG;
    cpu_loop_exit();
}

#ifndef TARGET_SPARC64
void do_wrpsr()
{
    if ((T0 & PSR_CWP) >= NWINDOWS)
        raise_exception(TT_ILL_INSN);
    else
        PUT_PSR(env, T0);
}

void do_rdpsr()
{
    T0 = GET_PSR(env);
}

#else

void do_popc()
{
    T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
    T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
    T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
    T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
    T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
    T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
}

static inline uint64_t *get_gregset(uint64_t pstate)
{
    switch (pstate) {
    default:
    case 0:
	return env->bgregs;
    case PS_AG:
	return env->agregs;
    case PS_MG:
	return env->mgregs;
    case PS_IG:
	return env->igregs;
    }
}

static inline void change_pstate(uint64_t new_pstate)
{
    uint64_t pstate_regs, new_pstate_regs;
    uint64_t *src, *dst;

    pstate_regs = env->pstate & 0xc01;
    new_pstate_regs = new_pstate & 0xc01;
    if (new_pstate_regs != pstate_regs) {
	// Switch global register bank
	src = get_gregset(new_pstate_regs);
	dst = get_gregset(pstate_regs);
	memcpy32(dst, env->gregs);
	memcpy32(env->gregs, src);
    }
    env->pstate = new_pstate;
}

void do_wrpstate(void)
{
    change_pstate(T0 & 0xf3f);
}

void do_done(void)
{
    env->tl--;
    env->pc = env->tnpc[env->tl];
    env->npc = env->tnpc[env->tl] + 4;
    PUT_CCR(env, env->tstate[env->tl] >> 32);
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
}

void do_retry(void)
{
    env->tl--;
    env->pc = env->tpc[env->tl];
    env->npc = env->tnpc[env->tl];
    PUT_CCR(env, env->tstate[env->tl] >> 32);
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
}
#endif

void set_cwp(int new_cwp)
{
    /* put the modified wrap registers at their proper location */
    if (env->cwp == (NWINDOWS - 1))
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
    env->cwp = new_cwp;
    /* put the wrap registers at their temporary location */
    if (new_cwp == (NWINDOWS - 1))
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
    env->regwptr = env->regbase + (new_cwp * 16);
    REGWPTR = env->regwptr;
}

void cpu_set_cwp(CPUState *env1, int new_cwp)
{
    CPUState *saved_env;
#ifdef reg_REGWPTR
    target_ulong *saved_regwptr;
#endif

    saved_env = env;
#ifdef reg_REGWPTR
    saved_regwptr = REGWPTR;
#endif
    env = env1;
    set_cwp(new_cwp);
    env = saved_env;
#ifdef reg_REGWPTR
    REGWPTR = saved_regwptr;
#endif
}

#ifdef TARGET_SPARC64
void do_interrupt(int intno)
{
#ifdef DEBUG_PCALL
    if (loglevel & CPU_LOG_INT) {
	static int count;
	fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
                count, intno,
                env->pc,
                env->npc, env->regwptr[6]);
	cpu_dump_state(env, logfile, fprintf, 0);
#if 0
	{
	    int i;
	    uint8_t *ptr;

	    fprintf(logfile, "       code=");
	    ptr = (uint8_t *)env->pc;
	    for(i = 0; i < 16; i++) {
		fprintf(logfile, " %02x", ldub(ptr + i));
	    }
	    fprintf(logfile, "\n");
	}
#endif
	count++;
    }
#endif
#if !defined(CONFIG_USER_ONLY)
    if (env->tl == MAXTL) {
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
	return;
    }
#endif
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
	((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
    env->tpc[env->tl] = env->pc;
    env->tnpc[env->tl] = env->npc;
    env->tt[env->tl] = intno;
    change_pstate(PS_PEF | PS_PRIV | PS_AG);

    if (intno == TT_CLRWIN)
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
    else if ((intno & 0x1c0) == TT_SPILL)
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
    else if ((intno & 0x1c0) == TT_FILL)
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
    env->tbr &= ~0x7fffULL;
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
    if (env->tl < MAXTL - 1) {
	env->tl++;
    } else {
	env->pstate |= PS_RED;
	if (env->tl != MAXTL)
	    env->tl++;
    }
    env->pc = env->tbr;
    env->npc = env->pc + 4;
    env->exception_index = 0;
}
#else
void do_interrupt(int intno)
{
    int cwp;

#ifdef DEBUG_PCALL
    if (loglevel & CPU_LOG_INT) {
	static int count;
	fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
                count, intno,
                env->pc,
                env->npc, env->regwptr[6]);
	cpu_dump_state(env, logfile, fprintf, 0);
#if 0
	{
	    int i;
	    uint8_t *ptr;

	    fprintf(logfile, "       code=");
	    ptr = (uint8_t *)env->pc;
	    for(i = 0; i < 16; i++) {
		fprintf(logfile, " %02x", ldub(ptr + i));
	    }
	    fprintf(logfile, "\n");
	}
#endif
	count++;
    }
#endif
#if !defined(CONFIG_USER_ONLY)
    if (env->psret == 0) {
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
	return;
    }
#endif
    env->psret = 0;
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
    set_cwp(cwp);
    env->regwptr[9] = env->pc;
    env->regwptr[10] = env->npc;
    env->psrps = env->psrs;
    env->psrs = 1;
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
    env->pc = env->tbr;
    env->npc = env->pc + 4;
    env->exception_index = 0;
}
#endif

#if !defined(CONFIG_USER_ONLY)

static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
                                void *retaddr);

#define MMUSUFFIX _mmu
#define ALIGNED_ONLY
#define GETPC() (__builtin_return_address(0))

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
                                void *retaddr)
{
#ifdef DEBUG_UNALIGNED
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
#endif
    raise_exception(TT_UNALIGNED);
}

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
{
    TranslationBlock *tb;
    int ret;
    unsigned long pc;
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;

    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
    if (ret) {
        if (retaddr) {
            /* now we have a real cpu fault */
            pc = (unsigned long)retaddr;
            tb = tb_find_pc(pc);
            if (tb) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, (void *)T2);
            }
        }
        cpu_loop_exit();
    }
    env = saved_env;
}

#endif

#ifndef TARGET_SPARC64
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
                          int is_asi)
{
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    if (env->mmuregs[3]) /* Fault status register */
	env->mmuregs[3] = 1; /* overflow (not read before another fault) */
    if (is_asi)
        env->mmuregs[3] |= 1 << 16;
    if (env->psrs)
        env->mmuregs[3] |= 1 << 5;
    if (is_exec)
        env->mmuregs[3] |= 1 << 6;
    if (is_write)
        env->mmuregs[3] |= 1 << 7;
    env->mmuregs[3] |= (5 << 2) | 2;
    env->mmuregs[4] = addr; /* Fault address register */
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
#ifdef DEBUG_UNASSIGNED
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
               "\n", addr, env->pc);
#endif
        if (is_exec)
            raise_exception(TT_CODE_ACCESS);
        else
            raise_exception(TT_DATA_ACCESS);
    }
    env = saved_env;
}
#else
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
                          int is_asi)
{
#ifdef DEBUG_UNASSIGNED
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
           addr, env->pc);
    env = saved_env;
#endif
    if (is_exec)
        raise_exception(TT_CODE_ACCESS);
    else
        raise_exception(TT_DATA_ACCESS);
}
#endif

#ifdef TARGET_SPARC64
void do_tick_set_count(void *opaque, uint64_t count)
{
#if !defined(CONFIG_USER_ONLY)
    ptimer_set_count(opaque, -count);
#endif
}

uint64_t do_tick_get_count(void *opaque)
{
#if !defined(CONFIG_USER_ONLY)
    return -ptimer_get_count(opaque);
#else
    return 0;
#endif
}

void do_tick_set_limit(void *opaque, uint64_t limit)
{
#if !defined(CONFIG_USER_ONLY)
    ptimer_set_limit(opaque, -limit, 0);
#endif
}
#endif