aboutsummaryrefslogtreecommitdiff
path: root/target-s390x/int_helper.c
blob: e2eeb075756f1c5552410fbcadc46ed766019984 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
 *  S/390 integer helper routines
 *
 *  Copyright (c) 2009 Ulrich Hecht
 *  Copyright (c) 2009 Alexander Graf
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "cpu.h"
#include "dyngen-exec.h"
#include "host-utils.h"
#include "helper.h"

/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif

/* 64/64 -> 128 unsigned multiplication */
void HELPER(mlg)(uint32_t r1, uint64_t v2)
{
#if HOST_LONG_BITS == 64 && defined(__GNUC__)
    /* assuming 64-bit hosts have __uint128_t */
    __uint128_t res = (__uint128_t)env->regs[r1 + 1];

    res *= (__uint128_t)v2;
    env->regs[r1] = (uint64_t)(res >> 64);
    env->regs[r1 + 1] = (uint64_t)res;
#else
    mulu64(&env->regs[r1 + 1], &env->regs[r1], env->regs[r1 + 1], v2);
#endif
}

/* 128 -> 64/64 unsigned division */
void HELPER(dlg)(uint32_t r1, uint64_t v2)
{
    uint64_t divisor = v2;

    if (!env->regs[r1]) {
        /* 64 -> 64/64 case */
        env->regs[r1] = env->regs[r1 + 1] % divisor;
        env->regs[r1 + 1] = env->regs[r1 + 1] / divisor;
        return;
    } else {
#if HOST_LONG_BITS == 64 && defined(__GNUC__)
        /* assuming 64-bit hosts have __uint128_t */
        __uint128_t dividend = (((__uint128_t)env->regs[r1]) << 64) |
            (env->regs[r1 + 1]);
        __uint128_t quotient = dividend / divisor;
        __uint128_t remainder = dividend % divisor;

        env->regs[r1 + 1] = quotient;
        env->regs[r1] = remainder;
#else
        /* 32-bit hosts would need special wrapper functionality - just abort if
           we encounter such a case; it's very unlikely anyways. */
        cpu_abort(env, "128 -> 64/64 division not implemented\n");
#endif
    }
}

/* absolute value 32-bit */
uint32_t HELPER(abs_i32)(int32_t val)
{
    if (val < 0) {
        return -val;
    } else {
        return val;
    }
}

/* negative absolute value 32-bit */
int32_t HELPER(nabs_i32)(int32_t val)
{
    if (val < 0) {
        return val;
    } else {
        return -val;
    }
}

/* absolute value 64-bit */
uint64_t HELPER(abs_i64)(int64_t val)
{
    HELPER_LOG("%s: val 0x%" PRIx64 "\n", __func__, val);

    if (val < 0) {
        return -val;
    } else {
        return val;
    }
}

/* negative absolute value 64-bit */
int64_t HELPER(nabs_i64)(int64_t val)
{
    if (val < 0) {
        return val;
    } else {
        return -val;
    }
}

/* add with carry 32-bit unsigned */
uint32_t HELPER(addc_u32)(uint32_t cc, uint32_t v1, uint32_t v2)
{
    uint32_t res;

    res = v1 + v2;
    if (cc & 2) {
        res++;
    }

    return res;
}

/* subtract unsigned v2 from v1 with borrow */
uint32_t HELPER(slb)(uint32_t cc, uint32_t r1, uint32_t v2)
{
    uint32_t v1 = env->regs[r1];
    uint32_t res = v1 + (~v2) + (cc >> 1);

    env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | res;
    if (cc & 2) {
        /* borrow */
        return v1 ? 1 : 0;
    } else {
        return v1 ? 3 : 2;
    }
}

/* subtract unsigned v2 from v1 with borrow */
uint32_t HELPER(slbg)(uint32_t cc, uint32_t r1, uint64_t v1, uint64_t v2)
{
    uint64_t res = v1 + (~v2) + (cc >> 1);

    env->regs[r1] = res;
    if (cc & 2) {
        /* borrow */
        return v1 ? 1 : 0;
    } else {
        return v1 ? 3 : 2;
    }
}

/* find leftmost one */
uint32_t HELPER(flogr)(uint32_t r1, uint64_t v2)
{
    uint64_t res = 0;
    uint64_t ov2 = v2;

    while (!(v2 & 0x8000000000000000ULL) && v2) {
        v2 <<= 1;
        res++;
    }

    if (!v2) {
        env->regs[r1] = 64;
        env->regs[r1 + 1] = 0;
        return 0;
    } else {
        env->regs[r1] = res;
        env->regs[r1 + 1] = ov2 & ~(0x8000000000000000ULL >> res);
        return 2;
    }
}

uint64_t HELPER(cvd)(int32_t bin)
{
    /* positive 0 */
    uint64_t dec = 0x0c;
    int shift = 4;

    if (bin < 0) {
        bin = -bin;
        dec = 0x0d;
    }

    for (shift = 4; (shift < 64) && bin; shift += 4) {
        int current_number = bin % 10;

        dec |= (current_number) << shift;
        bin /= 10;
    }

    return dec;
}