aboutsummaryrefslogtreecommitdiff
path: root/target-ppc/kvm.c
blob: 6843fa0b98a8b913962cf9f285a76122ea64983b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
/*
 * PowerPC implementation of KVM hooks
 *
 * Copyright IBM Corp. 2007
 * Copyright (C) 2011 Freescale Semiconductor, Inc.
 *
 * Authors:
 *  Jerone Young <jyoung5@us.ibm.com>
 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 *  Hollis Blanchard <hollisb@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <dirent.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/vfs.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "cpu.h"
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
#include "mmu-hash64.h"

#include "hw/sysbus.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/ppc/ppc.h"
#include "sysemu/watchdog.h"
#include "trace.h"
#include "exec/gdbstub.h"

//#define DEBUG_KVM

#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
    do { } while (0)
#endif

#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"

const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

static int cap_interrupt_unset = false;
static int cap_interrupt_level = false;
static int cap_segstate;
static int cap_booke_sregs;
static int cap_ppc_smt;
static int cap_ppc_rma;
static int cap_spapr_tce;
static int cap_spapr_multitce;
static int cap_spapr_vfio;
static int cap_hior;
static int cap_one_reg;
static int cap_epr;
static int cap_ppc_watchdog;
static int cap_papr;
static int cap_htab_fd;
static int cap_fixup_hcalls;

static uint32_t debug_inst_opcode;

/* XXX We have a race condition where we actually have a level triggered
 *     interrupt, but the infrastructure can't expose that yet, so the guest
 *     takes but ignores it, goes to sleep and never gets notified that there's
 *     still an interrupt pending.
 *
 *     As a quick workaround, let's just wake up again 20 ms after we injected
 *     an interrupt. That way we can assure that we're always reinjecting
 *     interrupts in case the guest swallowed them.
 */
static QEMUTimer *idle_timer;

static void kvm_kick_cpu(void *opaque)
{
    PowerPCCPU *cpu = opaque;

    qemu_cpu_kick(CPU(cpu));
}

static int kvm_ppc_register_host_cpu_type(void);

int kvm_arch_init(KVMState *s)
{
    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
    cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
    cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
    cap_spapr_vfio = false;
    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
    /* Note: we don't set cap_papr here, because this capability is
     * only activated after this by kvmppc_set_papr() */
    cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);

    if (!cap_interrupt_level) {
        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
                        "VM to stall at times!\n");
    }

    kvm_ppc_register_host_cpu_type();

    return 0;
}

static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
{
    CPUPPCState *cenv = &cpu->env;
    CPUState *cs = CPU(cpu);
    struct kvm_sregs sregs;
    int ret;

    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
        /* What we're really trying to say is "if we're on BookE, we use
           the native PVR for now". This is the only sane way to check
           it though, so we potentially confuse users that they can run
           BookE guests on BookS. Let's hope nobody dares enough :) */
        return 0;
    } else {
        if (!cap_segstate) {
            fprintf(stderr, "kvm error: missing PVR setting capability\n");
            return -ENOSYS;
        }
    }

    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
    if (ret) {
        return ret;
    }

    sregs.pvr = cenv->spr[SPR_PVR];
    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
}

/* Set up a shared TLB array with KVM */
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
    struct kvm_book3e_206_tlb_params params = {};
    struct kvm_config_tlb cfg = {};
    unsigned int entries = 0;
    int ret, i;

    if (!kvm_enabled() ||
        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
        return 0;
    }

    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);

    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
        params.tlb_sizes[i] = booke206_tlb_size(env, i);
        params.tlb_ways[i] = booke206_tlb_ways(env, i);
        entries += params.tlb_sizes[i];
    }

    assert(entries == env->nb_tlb);
    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));

    env->tlb_dirty = true;

    cfg.array = (uintptr_t)env->tlb.tlbm;
    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
    cfg.params = (uintptr_t)&params;
    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;

    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    env->kvm_sw_tlb = true;
    return 0;
}


#if defined(TARGET_PPC64)
static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
                                       struct kvm_ppc_smmu_info *info)
{
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);

    memset(info, 0, sizeof(*info));

    /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
     * need to "guess" what the supported page sizes are.
     *
     * For that to work we make a few assumptions:
     *
     * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
     *   KVM which only supports 4K and 16M pages, but supports them
     *   regardless of the backing store characteritics. We also don't
     *   support 1T segments.
     *
     *   This is safe as if HV KVM ever supports that capability or PR
     *   KVM grows supports for more page/segment sizes, those versions
     *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
     *   will not hit this fallback
     *
     * - Else we are running HV KVM. This means we only support page
     *   sizes that fit in the backing store. Additionally we only
     *   advertize 64K pages if the processor is ARCH 2.06 and we assume
     *   P7 encodings for the SLB and hash table. Here too, we assume
     *   support for any newer processor will mean a kernel that
     *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
     *   this fallback.
     */
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
        /* No flags */
        info->flags = 0;
        info->slb_size = 64;

        /* Standard 4k base page size segment */
        info->sps[0].page_shift = 12;
        info->sps[0].slb_enc = 0;
        info->sps[0].enc[0].page_shift = 12;
        info->sps[0].enc[0].pte_enc = 0;

        /* Standard 16M large page size segment */
        info->sps[1].page_shift = 24;
        info->sps[1].slb_enc = SLB_VSID_L;
        info->sps[1].enc[0].page_shift = 24;
        info->sps[1].enc[0].pte_enc = 0;
    } else {
        int i = 0;

        /* HV KVM has backing store size restrictions */
        info->flags = KVM_PPC_PAGE_SIZES_REAL;

        if (env->mmu_model & POWERPC_MMU_1TSEG) {
            info->flags |= KVM_PPC_1T_SEGMENTS;
        }

        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->slb_size = 32;
        } else {
            info->slb_size = 64;
        }

        /* Standard 4k base page size segment */
        info->sps[i].page_shift = 12;
        info->sps[i].slb_enc = 0;
        info->sps[i].enc[0].page_shift = 12;
        info->sps[i].enc[0].pte_enc = 0;
        i++;

        /* 64K on MMU 2.06 */
        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->sps[i].page_shift = 16;
            info->sps[i].slb_enc = 0x110;
            info->sps[i].enc[0].page_shift = 16;
            info->sps[i].enc[0].pte_enc = 1;
            i++;
        }

        /* Standard 16M large page size segment */
        info->sps[i].page_shift = 24;
        info->sps[i].slb_enc = SLB_VSID_L;
        info->sps[i].enc[0].page_shift = 24;
        info->sps[i].enc[0].pte_enc = 0;
    }
}

static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
{
    CPUState *cs = CPU(cpu);
    int ret;

    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
        ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
        if (ret == 0) {
            return;
        }
    }

    kvm_get_fallback_smmu_info(cpu, info);
}

static long getrampagesize(void)
{
    struct statfs fs;
    int ret;

    if (!mem_path) {
        /* guest RAM is backed by normal anonymous pages */
        return getpagesize();
    }

    do {
        ret = statfs(mem_path, &fs);
    } while (ret != 0 && errno == EINTR);

    if (ret != 0) {
        fprintf(stderr, "Couldn't statfs() memory path: %s\n",
                strerror(errno));
        exit(1);
    }

#define HUGETLBFS_MAGIC       0x958458f6

    if (fs.f_type != HUGETLBFS_MAGIC) {
        /* Explicit mempath, but it's ordinary pages */
        return getpagesize();
    }

    /* It's hugepage, return the huge page size */
    return fs.f_bsize;
}

static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
{
    if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
        return true;
    }

    return (1ul << shift) <= rampgsize;
}

static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
{
    static struct kvm_ppc_smmu_info smmu_info;
    static bool has_smmu_info;
    CPUPPCState *env = &cpu->env;
    long rampagesize;
    int iq, ik, jq, jk;

    /* We only handle page sizes for 64-bit server guests for now */
    if (!(env->mmu_model & POWERPC_MMU_64)) {
        return;
    }

    /* Collect MMU info from kernel if not already */
    if (!has_smmu_info) {
        kvm_get_smmu_info(cpu, &smmu_info);
        has_smmu_info = true;
    }

    rampagesize = getrampagesize();

    /* Convert to QEMU form */
    memset(&env->sps, 0, sizeof(env->sps));

    /*
     * XXX This loop should be an entry wide AND of the capabilities that
     *     the selected CPU has with the capabilities that KVM supports.
     */
    for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
        struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
        struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];

        if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                 ksps->page_shift)) {
            continue;
        }
        qsps->page_shift = ksps->page_shift;
        qsps->slb_enc = ksps->slb_enc;
        for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
            if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                     ksps->enc[jk].page_shift)) {
                continue;
            }
            qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
            qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
            if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
                break;
            }
        }
        if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
            break;
        }
    }
    env->slb_nr = smmu_info.slb_size;
    if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
        env->mmu_model &= ~POWERPC_MMU_1TSEG;
    }
}
#else /* defined (TARGET_PPC64) */

static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
{
}

#endif /* !defined (TARGET_PPC64) */

unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
    return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
}

/* e500 supports 2 h/w breakpoint and 2 watchpoint.
 * book3s supports only 1 watchpoint, so array size
 * of 4 is sufficient for now.
 */
#define MAX_HW_BKPTS 4

static struct HWBreakpoint {
    target_ulong addr;
    int type;
} hw_debug_points[MAX_HW_BKPTS];

static CPUWatchpoint hw_watchpoint;

/* Default there is no breakpoint and watchpoint supported */
static int max_hw_breakpoint;
static int max_hw_watchpoint;
static int nb_hw_breakpoint;
static int nb_hw_watchpoint;

static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
{
    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
        max_hw_breakpoint = 2;
        max_hw_watchpoint = 2;
    }

    if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
        fprintf(stderr, "Error initializing h/w breakpoints\n");
        return;
    }
}

int kvm_arch_init_vcpu(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *cenv = &cpu->env;
    int ret;

    /* Gather server mmu info from KVM and update the CPU state */
    kvm_fixup_page_sizes(cpu);

    /* Synchronize sregs with kvm */
    ret = kvm_arch_sync_sregs(cpu);
    if (ret) {
        return ret;
    }

    idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);

    /* Some targets support access to KVM's guest TLB. */
    switch (cenv->mmu_model) {
    case POWERPC_MMU_BOOKE206:
        ret = kvm_booke206_tlb_init(cpu);
        break;
    default:
        break;
    }

    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
    kvmppc_hw_debug_points_init(cenv);

    return ret;
}

static void kvm_sw_tlb_put(PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
    struct kvm_dirty_tlb dirty_tlb;
    unsigned char *bitmap;
    int ret;

    if (!env->kvm_sw_tlb) {
        return;
    }

    bitmap = g_malloc((env->nb_tlb + 7) / 8);
    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);

    dirty_tlb.bitmap = (uintptr_t)bitmap;
    dirty_tlb.num_dirty = env->nb_tlb;

    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
    if (ret) {
        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
                __func__, strerror(-ret));
    }

    g_free(bitmap);
}

static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret != 0) {
        trace_kvm_failed_spr_get(spr, strerror(errno));
    } else {
        switch (id & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            env->spr[spr] = val.u32;
            break;

        case KVM_REG_SIZE_U64:
            env->spr[spr] = val.u64;
            break;

        default:
            /* Don't handle this size yet */
            abort();
        }
    }
}

static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    switch (id & KVM_REG_SIZE_MASK) {
    case KVM_REG_SIZE_U32:
        val.u32 = env->spr[spr];
        break;

    case KVM_REG_SIZE_U64:
        val.u64 = env->spr[spr];
        break;

    default:
        /* Don't handle this size yet */
        abort();
    }

    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret != 0) {
        trace_kvm_failed_spr_set(spr, strerror(errno));
    }
}

static int kvm_put_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr = env->fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
            DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
            return ret;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            vsr[0] = float64_val(env->fpr[i]);
            vsr[1] = env->vsr[i];
            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
                DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
                        i, strerror(errno));
                return ret;
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
            DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
                DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
                return ret;
            }
        }
    }

    return 0;
}

static int kvm_get_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
            DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
            return ret;
        } else {
            env->fpscr = fpscr;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
                DPRINTF("Unable to get %s%d from KVM: %s\n",
                        vsx ? "VSR" : "FPR", i, strerror(errno));
                return ret;
            } else {
                env->fpr[i] = vsr[0];
                if (vsx) {
                    env->vsr[i] = vsr[1];
                }
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
            DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
                DPRINTF("Unable to get VR%d from KVM: %s\n",
                        i, strerror(errno));
                return ret;
            }
        }
    }

    return 0;
}

#if defined(TARGET_PPC64)
static int kvm_get_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    reg.id = KVM_REG_PPC_VPA_ADDR;
    reg.addr = (uintptr_t)&env->vpa_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
        DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
        return ret;
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
        DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
                strerror(errno));
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
        DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
                strerror(errno));
        return ret;
    }

    return 0;
}

static int kvm_put_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    /* SLB shadow or DTL can't be registered unless a master VPA is
     * registered.  That means when restoring state, if a VPA *is*
     * registered, we need to set that up first.  If not, we need to
     * deregister the others before deregistering the master VPA */
    assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));

    if (env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
            return ret;
        }
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
        DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
        DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
                strerror(errno));
        return ret;
    }

    if (!env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
            return ret;
        }
    }

    return 0;
}
#endif /* TARGET_PPC64 */

int kvm_arch_put_registers(CPUState *cs, int level)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_regs regs;
    int ret;
    int i;

    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    if (ret < 0) {
        return ret;
    }

    regs.ctr = env->ctr;
    regs.lr  = env->lr;
    regs.xer = cpu_read_xer(env);
    regs.msr = env->msr;
    regs.pc = env->nip;

    regs.srr0 = env->spr[SPR_SRR0];
    regs.srr1 = env->spr[SPR_SRR1];

    regs.sprg0 = env->spr[SPR_SPRG0];
    regs.sprg1 = env->spr[SPR_SPRG1];
    regs.sprg2 = env->spr[SPR_SPRG2];
    regs.sprg3 = env->spr[SPR_SPRG3];
    regs.sprg4 = env->spr[SPR_SPRG4];
    regs.sprg5 = env->spr[SPR_SPRG5];
    regs.sprg6 = env->spr[SPR_SPRG6];
    regs.sprg7 = env->spr[SPR_SPRG7];

    regs.pid = env->spr[SPR_BOOKE_PID];

    for (i = 0;i < 32; i++)
        regs.gpr[i] = env->gpr[i];

    regs.cr = 0;
    for (i = 0; i < 8; i++) {
        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
    }

    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
    if (ret < 0)
        return ret;

    kvm_put_fp(cs);

    if (env->tlb_dirty) {
        kvm_sw_tlb_put(cpu);
        env->tlb_dirty = false;
    }

    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
        struct kvm_sregs sregs;

        sregs.pvr = env->spr[SPR_PVR];

        sregs.u.s.sdr1 = env->spr[SPR_SDR1];

        /* Sync SLB */
#ifdef TARGET_PPC64
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
            sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
            if (env->slb[i].esid & SLB_ESID_V) {
                sregs.u.s.ppc64.slb[i].slbe |= i;
            }
            sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
        }
#endif

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            sregs.u.s.ppc32.sr[i] = env->sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
            /* Beware. We have to swap upper and lower bits here */
            sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
                | env->DBAT[1][i];
            sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
                | env->IBAT[1][i];
        }

        ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
        if (ret) {
            return ret;
        }
    }

    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }

    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_put_one_spr(cs, id, i);
            }
        }

#ifdef TARGET_PPC64
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

        if (cap_papr) {
            if (kvm_put_vpa(cs) < 0) {
                DPRINTF("Warning: Unable to set VPA information to KVM\n");
            }
        }

        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
#endif /* TARGET_PPC64 */
    }

    return ret;
}

static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
{
     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
}

int kvm_arch_get_registers(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_regs regs;
    struct kvm_sregs sregs;
    uint32_t cr;
    int i, ret;

    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    if (ret < 0)
        return ret;

    cr = regs.cr;
    for (i = 7; i >= 0; i--) {
        env->crf[i] = cr & 15;
        cr >>= 4;
    }

    env->ctr = regs.ctr;
    env->lr = regs.lr;
    cpu_write_xer(env, regs.xer);
    env->msr = regs.msr;
    env->nip = regs.pc;

    env->spr[SPR_SRR0] = regs.srr0;
    env->spr[SPR_SRR1] = regs.srr1;

    env->spr[SPR_SPRG0] = regs.sprg0;
    env->spr[SPR_SPRG1] = regs.sprg1;
    env->spr[SPR_SPRG2] = regs.sprg2;
    env->spr[SPR_SPRG3] = regs.sprg3;
    env->spr[SPR_SPRG4] = regs.sprg4;
    env->spr[SPR_SPRG5] = regs.sprg5;
    env->spr[SPR_SPRG6] = regs.sprg6;
    env->spr[SPR_SPRG7] = regs.sprg7;

    env->spr[SPR_BOOKE_PID] = regs.pid;

    for (i = 0;i < 32; i++)
        env->gpr[i] = regs.gpr[i];

    kvm_get_fp(cs);

    if (cap_booke_sregs) {
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
        if (ret < 0) {
            return ret;
        }

        if (sregs.u.e.features & KVM_SREGS_E_BASE) {
            env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
            env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
            env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
            env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
            env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
            env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
            env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
            env->spr[SPR_DECR] = sregs.u.e.dec;
            env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
            env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
            env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
            env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
            env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
            env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
            env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
            env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_64) {
            env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
            env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
        }

        if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
            env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
            kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
            env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
            kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
            env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
            kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
            env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
            kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
            env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
            kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
            env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
            kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
            env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
            kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
            env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
            kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
            env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
            kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
            env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
            kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
            env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
            kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
            env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
            kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
            env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
            kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
            env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
            kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
            env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
            kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
            env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
            kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);

            if (sregs.u.e.features & KVM_SREGS_E_SPE) {
                env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
                kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
                env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
                kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
                env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
                kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
            }

            if (sregs.u.e.features & KVM_SREGS_E_PM) {
                env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
                kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
            }

            if (sregs.u.e.features & KVM_SREGS_E_PC) {
                env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
                kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
                env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
                kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
            }
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
            env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
            env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
            env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
            env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
            env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
            env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
            env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
            env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
            env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
            env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
        }

        if (sregs.u.e.features & KVM_SREGS_EXP) {
            env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_PD) {
            env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
            env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
        }

        if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
            env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
            env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
            env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;

            if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
                env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
                env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
            }
        }
    }

    if (cap_segstate) {
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
        if (ret < 0) {
            return ret;
        }

        if (!env->external_htab) {
            ppc_store_sdr1(env, sregs.u.s.sdr1);
        }

        /* Sync SLB */
#ifdef TARGET_PPC64
        /*
         * The packed SLB array we get from KVM_GET_SREGS only contains
         * information about valid entries. So we flush our internal
         * copy to get rid of stale ones, then put all valid SLB entries
         * back in.
         */
        memset(env->slb, 0, sizeof(env->slb));
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
            target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
            target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
            /*
             * Only restore valid entries
             */
            if (rb & SLB_ESID_V) {
                ppc_store_slb(env, rb, rs);
            }
        }
#endif

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            env->sr[i] = sregs.u.s.ppc32.sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
            env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
            env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
            env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
            env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
        }
    }

    if (cap_hior) {
        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }

    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_get_one_spr(cs, id, i);
            }
        }

#ifdef TARGET_PPC64
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

        if (cap_papr) {
            if (kvm_get_vpa(cs) < 0) {
                DPRINTF("Warning: Unable to get VPA information from KVM\n");
            }
        }

        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
#endif
    }

    return 0;
}

int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
{
    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;

    if (irq != PPC_INTERRUPT_EXT) {
        return 0;
    }

    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
        return 0;
    }

    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);

    return 0;
}

#if defined(TARGET_PPCEMB)
#define PPC_INPUT_INT PPC40x_INPUT_INT
#elif defined(TARGET_PPC64)
#define PPC_INPUT_INT PPC970_INPUT_INT
#else
#define PPC_INPUT_INT PPC6xx_INPUT_INT
#endif

void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    int r;
    unsigned irq;

    /* PowerPC QEMU tracks the various core input pins (interrupt, critical
     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
    if (!cap_interrupt_level &&
        run->ready_for_interrupt_injection &&
        (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
        (env->irq_input_state & (1<<PPC_INPUT_INT)))
    {
        /* For now KVM disregards the 'irq' argument. However, in the
         * future KVM could cache it in-kernel to avoid a heavyweight exit
         * when reading the UIC.
         */
        irq = KVM_INTERRUPT_SET;

        DPRINTF("injected interrupt %d\n", irq);
        r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
        if (r < 0) {
            printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
        }

        /* Always wake up soon in case the interrupt was level based */
        timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                       (get_ticks_per_sec() / 50));
    }

    /* We don't know if there are more interrupts pending after this. However,
     * the guest will return to userspace in the course of handling this one
     * anyways, so we will get a chance to deliver the rest. */
}

void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
{
}

int kvm_arch_process_async_events(CPUState *cs)
{
    return cs->halted;
}

static int kvmppc_handle_halt(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
        cs->halted = 1;
        cs->exception_index = EXCP_HLT;
    }

    return 0;
}

/* map dcr access to existing qemu dcr emulation */
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
{
    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);

    return 0;
}

static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
{
    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);

    return 0;
}

int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    /* Mixed endian case is not handled */
    uint32_t sc = debug_inst_opcode;

    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
                            sizeof(sc), 0) ||
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
        return -EINVAL;
    }

    return 0;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    uint32_t sc;

    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
        sc != debug_inst_opcode ||
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
                            sizeof(sc), 1)) {
        return -EINVAL;
    }

    return 0;
}

static int find_hw_breakpoint(target_ulong addr, int type)
{
    int n;

    assert((nb_hw_breakpoint + nb_hw_watchpoint)
           <= ARRAY_SIZE(hw_debug_points));

    for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
        if (hw_debug_points[n].addr == addr &&
             hw_debug_points[n].type == type) {
            return n;
        }
    }

    return -1;
}

static int find_hw_watchpoint(target_ulong addr, int *flag)
{
    int n;

    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
    if (n >= 0) {
        *flag = BP_MEM_ACCESS;
        return n;
    }

    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
    if (n >= 0) {
        *flag = BP_MEM_WRITE;
        return n;
    }

    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
    if (n >= 0) {
        *flag = BP_MEM_READ;
        return n;
    }

    return -1;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
        return -ENOBUFS;
    }

    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;

    switch (type) {
    case GDB_BREAKPOINT_HW:
        if (nb_hw_breakpoint >= max_hw_breakpoint) {
            return -ENOBUFS;
        }

        if (find_hw_breakpoint(addr, type) >= 0) {
            return -EEXIST;
        }

        nb_hw_breakpoint++;
        break;

    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
        if (nb_hw_watchpoint >= max_hw_watchpoint) {
            return -ENOBUFS;
        }

        if (find_hw_breakpoint(addr, type) >= 0) {
            return -EEXIST;
        }

        nb_hw_watchpoint++;
        break;

    default:
        return -ENOSYS;
    }

    return 0;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    int n;

    n = find_hw_breakpoint(addr, type);
    if (n < 0) {
        return -ENOENT;
    }

    switch (type) {
    case GDB_BREAKPOINT_HW:
        nb_hw_breakpoint--;
        break;

    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
        nb_hw_watchpoint--;
        break;

    default:
        return -ENOSYS;
    }
    hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];

    return 0;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
    nb_hw_breakpoint = nb_hw_watchpoint = 0;
}

void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
    int n;

    /* Software Breakpoint updates */
    if (kvm_sw_breakpoints_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    }

    assert((nb_hw_breakpoint + nb_hw_watchpoint)
           <= ARRAY_SIZE(hw_debug_points));
    assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));

    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
        memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
        for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
            switch (hw_debug_points[n].type) {
            case GDB_BREAKPOINT_HW:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
                break;
            case GDB_WATCHPOINT_WRITE:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
                break;
            case GDB_WATCHPOINT_READ:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
                break;
            case GDB_WATCHPOINT_ACCESS:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
                                        KVMPPC_DEBUG_WATCH_READ;
                break;
            default:
                cpu_abort(cs, "Unsupported breakpoint type\n");
            }
            dbg->arch.bp[n].addr = hw_debug_points[n].addr;
        }
    }
}

static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
    int handle = 0;
    int n;
    int flag = 0;

    if (cs->singlestep_enabled) {
        handle = 1;
    } else if (arch_info->status) {
        if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
            if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
                n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
                if (n >= 0) {
                    handle = 1;
                }
            } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
                                            KVMPPC_DEBUG_WATCH_WRITE)) {
                n = find_hw_watchpoint(arch_info->address,  &flag);
                if (n >= 0) {
                    handle = 1;
                    cs->watchpoint_hit = &hw_watchpoint;
                    hw_watchpoint.vaddr = hw_debug_points[n].addr;
                    hw_watchpoint.flags = flag;
                }
            }
        }
    } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
        handle = 1;
    } else {
        /* QEMU is not able to handle debug exception, so inject
         * program exception to guest;
         * Yes program exception NOT debug exception !!
         * When QEMU is using debug resources then debug exception must
         * be always set. To achieve this we set MSR_DE and also set
         * MSRP_DEP so guest cannot change MSR_DE.
         * When emulating debug resource for guest we want guest
         * to control MSR_DE (enable/disable debug interrupt on need).
         * Supporting both configurations are NOT possible.
         * So the result is that we cannot share debug resources
         * between QEMU and Guest on BOOKE architecture.
         * In the current design QEMU gets the priority over guest,
         * this means that if QEMU is using debug resources then guest
         * cannot use them;
         * For software breakpoint QEMU uses a privileged instruction;
         * So there cannot be any reason that we are here for guest
         * set debug exception, only possibility is guest executed a
         * privileged / illegal instruction and that's why we are
         * injecting a program interrupt.
         */

        cpu_synchronize_state(cs);
        /* env->nip is PC, so increment this by 4 to use
         * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
         */
        env->nip += 4;
        cs->exception_index = POWERPC_EXCP_PROGRAM;
        env->error_code = POWERPC_EXCP_INVAL;
        ppc_cpu_do_interrupt(cs);
    }

    return handle;
}

int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    int ret;

    switch (run->exit_reason) {
    case KVM_EXIT_DCR:
        if (run->dcr.is_write) {
            DPRINTF("handle dcr write\n");
            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
        } else {
            DPRINTF("handle dcr read\n");
            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
        }
        break;
    case KVM_EXIT_HLT:
        DPRINTF("handle halt\n");
        ret = kvmppc_handle_halt(cpu);
        break;
#if defined(TARGET_PPC64)
    case KVM_EXIT_PAPR_HCALL:
        DPRINTF("handle PAPR hypercall\n");
        run->papr_hcall.ret = spapr_hypercall(cpu,
                                              run->papr_hcall.nr,
                                              run->papr_hcall.args);
        ret = 0;
        break;
#endif
    case KVM_EXIT_EPR:
        DPRINTF("handle epr\n");
        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
        ret = 0;
        break;
    case KVM_EXIT_WATCHDOG:
        DPRINTF("handle watchdog expiry\n");
        watchdog_perform_action();
        ret = 0;
        break;

    case KVM_EXIT_DEBUG:
        DPRINTF("handle debug exception\n");
        if (kvm_handle_debug(cpu, run)) {
            ret = EXCP_DEBUG;
            break;
        }
        /* re-enter, this exception was guest-internal */
        ret = 0;
        break;

    default:
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
        ret = -1;
        break;
    }

    return ret;
}

int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_OR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{

    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_CLEAR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_set_tcr(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    uint32_t tcr = env->spr[SPR_BOOKE_TCR];

    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_TCR,
        .addr = (uintptr_t) &tcr,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int ret;

    if (!kvm_enabled()) {
        return -1;
    }

    if (!cap_ppc_watchdog) {
        printf("warning: KVM does not support watchdog");
        return -1;
    }

    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    return ret;
}

static int read_cpuinfo(const char *field, char *value, int len)
{
    FILE *f;
    int ret = -1;
    int field_len = strlen(field);
    char line[512];

    f = fopen("/proc/cpuinfo", "r");
    if (!f) {
        return -1;
    }

    do {
        if (!fgets(line, sizeof(line), f)) {
            break;
        }
        if (!strncmp(line, field, field_len)) {
            pstrcpy(value, len, line);
            ret = 0;
            break;
        }
    } while(*line);

    fclose(f);

    return ret;
}

uint32_t kvmppc_get_tbfreq(void)
{
    char line[512];
    char *ns;
    uint32_t retval = get_ticks_per_sec();

    if (read_cpuinfo("timebase", line, sizeof(line))) {
        return retval;
    }

    if (!(ns = strchr(line, ':'))) {
        return retval;
    }

    ns++;

    retval = atoi(ns);
    return retval;
}

bool kvmppc_get_host_serial(char **value)
{
    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
                               NULL);
}

bool kvmppc_get_host_model(char **value)
{
    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
}

/* Try to find a device tree node for a CPU with clock-frequency property */
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
{
    struct dirent *dirp;
    DIR *dp;

    if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
        return -1;
    }

    buf[0] = '\0';
    while ((dirp = readdir(dp)) != NULL) {
        FILE *f;
        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
                 dirp->d_name);
        f = fopen(buf, "r");
        if (f) {
            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
            fclose(f);
            break;
        }
        buf[0] = '\0';
    }
    closedir(dp);
    if (buf[0] == '\0') {
        printf("Unknown host!\n");
        return -1;
    }

    return 0;
}

/* Read a CPU node property from the host device tree that's a single
 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
 * (can't find or open the property, or doesn't understand the
 * format) */
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
{
    char buf[PATH_MAX], *tmp;
    union {
        uint32_t v32;
        uint64_t v64;
    } u;
    FILE *f;
    int len;

    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
        return -1;
    }

    tmp = g_strdup_printf("%s/%s", buf, propname);

    f = fopen(tmp, "rb");
    g_free(tmp);
    if (!f) {
        return -1;
    }

    len = fread(&u, 1, sizeof(u), f);
    fclose(f);
    switch (len) {
    case 4:
        /* property is a 32-bit quantity */
        return be32_to_cpu(u.v32);
    case 8:
        return be64_to_cpu(u.v64);
    }

    return 0;
}

uint64_t kvmppc_get_clockfreq(void)
{
    return kvmppc_read_int_cpu_dt("clock-frequency");
}

uint32_t kvmppc_get_vmx(void)
{
    return kvmppc_read_int_cpu_dt("ibm,vmx");
}

uint32_t kvmppc_get_dfp(void)
{
    return kvmppc_read_int_cpu_dt("ibm,dfp");
}

static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
 {
     PowerPCCPU *cpu = ppc_env_get_cpu(env);
     CPUState *cs = CPU(cpu);

    if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
        return 0;
    }

    return 1;
}

int kvmppc_get_hasidle(CPUPPCState *env)
{
    struct kvm_ppc_pvinfo pvinfo;

    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
        return 1;
    }

    return 0;
}

int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
{
    uint32_t *hc = (uint32_t*)buf;
    struct kvm_ppc_pvinfo pvinfo;

    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
        memcpy(buf, pvinfo.hcall, buf_len);
        return 0;
    }

    /*
     * Fallback to always fail hypercalls regardless of endianness:
     *
     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
     *     li r3, -1
     *     b .+8       (becomes nop in wrong endian)
     *     bswap32(li r3, -1)
     */

    hc[0] = cpu_to_be32(0x08000048);
    hc[1] = cpu_to_be32(0x3860ffff);
    hc[2] = cpu_to_be32(0x48000008);
    hc[3] = cpu_to_be32(bswap32(0x3860ffff));

    return 0;
}

void kvmppc_set_papr(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int ret;

    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
    if (ret) {
        cpu_abort(cs, "This KVM version does not support PAPR\n");
    }

    /* Update the capability flag so we sync the right information
     * with kvm */
    cap_papr = 1;
}

int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
{
    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
}

void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
    CPUState *cs = CPU(cpu);
    int ret;

    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
    if (ret && mpic_proxy) {
        cpu_abort(cs, "This KVM version does not support EPR\n");
    }
}

int kvmppc_smt_threads(void)
{
    return cap_ppc_smt ? cap_ppc_smt : 1;
}

#ifdef TARGET_PPC64
off_t kvmppc_alloc_rma(void **rma)
{
    off_t size;
    int fd;
    struct kvm_allocate_rma ret;

    /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
     * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
     *                      not necessary on this hardware
     * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
     *
     * FIXME: We should allow the user to force contiguous RMA
     * allocation in the cap_ppc_rma==1 case.
     */
    if (cap_ppc_rma < 2) {
        return 0;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
    if (fd < 0) {
        fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
                strerror(errno));
        return -1;
    }

    size = MIN(ret.rma_size, 256ul << 20);

    *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
    if (*rma == MAP_FAILED) {
        fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
        return -1;
    };

    return size;
}

uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
{
    struct kvm_ppc_smmu_info info;
    long rampagesize, best_page_shift;
    int i;

    if (cap_ppc_rma >= 2) {
        return current_size;
    }

    /* Find the largest hardware supported page size that's less than
     * or equal to the (logical) backing page size of guest RAM */
    kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
    rampagesize = getrampagesize();
    best_page_shift = 0;

    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];

        if (!sps->page_shift) {
            continue;
        }

        if ((sps->page_shift > best_page_shift)
            && ((1UL << sps->page_shift) <= rampagesize)) {
            best_page_shift = sps->page_shift;
        }
    }

    return MIN(current_size,
               1ULL << (best_page_shift + hash_shift - 7));
}
#endif

bool kvmppc_spapr_use_multitce(void)
{
    return cap_spapr_multitce;
}

void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd,
                              bool vfio_accel)
{
    struct kvm_create_spapr_tce args = {
        .liobn = liobn,
        .window_size = window_size,
    };
    long len;
    int fd;
    void *table;

    /* Must set fd to -1 so we don't try to munmap when called for
     * destroying the table, which the upper layers -will- do
     */
    *pfd = -1;
    if (!cap_spapr_tce || (vfio_accel && !cap_spapr_vfio)) {
        return NULL;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
    if (fd < 0) {
        fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
                liobn);
        return NULL;
    }

    len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
    /* FIXME: round this up to page size */

    table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
    if (table == MAP_FAILED) {
        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
                liobn);
        close(fd);
        return NULL;
    }

    *pfd = fd;
    return table;
}

int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
{
    long len;

    if (fd < 0) {
        return -1;
    }

    len = nb_table * sizeof(uint64_t);
    if ((munmap(table, len) < 0) ||
        (close(fd) < 0)) {
        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
                strerror(errno));
        /* Leak the table */
    }

    return 0;
}

int kvmppc_reset_htab(int shift_hint)
{
    uint32_t shift = shift_hint;

    if (!kvm_enabled()) {
        /* Full emulation, tell caller to allocate htab itself */
        return 0;
    }
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
        int ret;
        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
        if (ret == -ENOTTY) {
            /* At least some versions of PR KVM advertise the
             * capability, but don't implement the ioctl().  Oops.
             * Return 0 so that we allocate the htab in qemu, as is
             * correct for PR. */
            return 0;
        } else if (ret < 0) {
            return ret;
        }
        return shift;
    }

    /* We have a kernel that predates the htab reset calls.  For PR
     * KVM, we need to allocate the htab ourselves, for an HV KVM of
     * this era, it has allocated a 16MB fixed size hash table
     * already.  Kernels of this era have the GET_PVINFO capability
     * only on PR, so we use this hack to determine the right
     * answer */
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
        /* PR - tell caller to allocate htab */
        return 0;
    } else {
        /* HV - assume 16MB kernel allocated htab */
        return 24;
    }
}

static inline uint32_t mfpvr(void)
{
    uint32_t pvr;

    asm ("mfpvr %0"
         : "=r"(pvr));
    return pvr;
}

static void alter_insns(uint64_t *word, uint64_t flags, bool on)
{
    if (on) {
        *word |= flags;
    } else {
        *word &= ~flags;
    }
}

static void kvmppc_host_cpu_initfn(Object *obj)
{
    assert(kvm_enabled());
}

static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
    uint32_t vmx = kvmppc_get_vmx();
    uint32_t dfp = kvmppc_get_dfp();
    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");

    /* Now fix up the class with information we can query from the host */
    pcc->pvr = mfpvr();

    if (vmx != -1) {
        /* Only override when we know what the host supports */
        alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
        alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
    }
    if (dfp != -1) {
        /* Only override when we know what the host supports */
        alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
    }

    if (dcache_size != -1) {
        pcc->l1_dcache_size = dcache_size;
    }

    if (icache_size != -1) {
        pcc->l1_icache_size = icache_size;
    }
}

bool kvmppc_has_cap_epr(void)
{
    return cap_epr;
}

bool kvmppc_has_cap_htab_fd(void)
{
    return cap_htab_fd;
}

bool kvmppc_has_cap_fixup_hcalls(void)
{
    return cap_fixup_hcalls;
}

static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
{
    ObjectClass *oc = OBJECT_CLASS(pcc);

    while (oc && !object_class_is_abstract(oc)) {
        oc = object_class_get_parent(oc);
    }
    assert(oc);

    return POWERPC_CPU_CLASS(oc);
}

static int kvm_ppc_register_host_cpu_type(void)
{
    TypeInfo type_info = {
        .name = TYPE_HOST_POWERPC_CPU,
        .instance_init = kvmppc_host_cpu_initfn,
        .class_init = kvmppc_host_cpu_class_init,
    };
    uint32_t host_pvr = mfpvr();
    PowerPCCPUClass *pvr_pcc;
    DeviceClass *dc;

    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
    if (pvr_pcc == NULL) {
        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
    }
    if (pvr_pcc == NULL) {
        return -1;
    }
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_register(&type_info);

    /* Register generic family CPU class for a family */
    pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
    dc = DEVICE_CLASS(pvr_pcc);
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
    type_register(&type_info);

    return 0;
}

int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
{
    struct kvm_rtas_token_args args = {
        .token = token,
    };

    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
        return -ENOENT;
    }

    strncpy(args.name, function, sizeof(args.name));

    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
}

int kvmppc_get_htab_fd(bool write)
{
    struct kvm_get_htab_fd s = {
        .flags = write ? KVM_GET_HTAB_WRITE : 0,
        .start_index = 0,
    };

    if (!cap_htab_fd) {
        fprintf(stderr, "KVM version doesn't support saving the hash table\n");
        return -1;
    }

    return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
}

int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
{
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
    uint8_t buf[bufsize];
    ssize_t rc;

    do {
        rc = read(fd, buf, bufsize);
        if (rc < 0) {
            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
                    strerror(errno));
            return rc;
        } else if (rc) {
            /* Kernel already retuns data in BE format for the file */
            qemu_put_buffer(f, buf, rc);
        }
    } while ((rc != 0)
             && ((max_ns < 0)
                 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));

    return (rc == 0) ? 1 : 0;
}

int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
                           uint16_t n_valid, uint16_t n_invalid)
{
    struct kvm_get_htab_header *buf;
    size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
    ssize_t rc;

    buf = alloca(chunksize);
    /* This is KVM on ppc, so this is all big-endian */
    buf->index = index;
    buf->n_valid = n_valid;
    buf->n_invalid = n_invalid;

    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);

    rc = write(fd, buf, chunksize);
    if (rc < 0) {
        fprintf(stderr, "Error writing KVM hash table: %s\n",
                strerror(errno));
        return rc;
    }
    if (rc != chunksize) {
        /* We should never get a short write on a single chunk */
        fprintf(stderr, "Short write, restoring KVM hash table\n");
        return -1;
    }
    return 0;
}

bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
{
    return true;
}

int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
    return 1;
}

int kvm_arch_on_sigbus(int code, void *addr)
{
    return 1;
}

void kvm_arch_init_irq_routing(KVMState *s)
{
}

struct kvm_get_htab_buf {
    struct kvm_get_htab_header header;
    /*
     * We require one extra byte for read
     */
    target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
};

uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf  *hpte_buf;

    ghf.flags = 0;
    ghf.start_index = pte_index;
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf = g_malloc0(sizeof(*hpte_buf));
    /*
     * Read the hpte group
     */
    if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
        goto out_close;
    }

    close(htab_fd);
    return (uint64_t)(uintptr_t) hpte_buf->hpte;

out_close:
    g_free(hpte_buf);
    close(htab_fd);
error_out:
    return 0;
}

void kvmppc_hash64_free_pteg(uint64_t token)
{
    struct kvm_get_htab_buf *htab_buf;

    htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
                            hpte);
    g_free(htab_buf);
    return;
}

void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
                             target_ulong pte0, target_ulong pte1)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf hpte_buf;

    ghf.flags = 0;
    ghf.start_index = 0;     /* Ignored */
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf.header.n_valid = 1;
    hpte_buf.header.n_invalid = 0;
    hpte_buf.header.index = pte_index;
    hpte_buf.hpte[0] = pte0;
    hpte_buf.hpte[1] = pte1;
    /*
     * Write the hpte entry.
     * CAUTION: write() has the warn_unused_result attribute. Hence we
     * need to check the return value, even though we do nothing.
     */
    if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
        goto out_close;
    }

out_close:
    close(htab_fd);
    return;

error_out:
    return;
}