1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
|
/*
* PowerPC Decimal Floating Point (DPF) emulation helpers for QEMU.
*
* Copyright (c) 2014 IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "exec/helper-proto.h"
#define DECNUMDIGITS 34
#include "libdecnumber/decContext.h"
#include "libdecnumber/decNumber.h"
#include "libdecnumber/dpd/decimal32.h"
#include "libdecnumber/dpd/decimal64.h"
#include "libdecnumber/dpd/decimal128.h"
#if defined(HOST_WORDS_BIGENDIAN)
#define HI_IDX 0
#define LO_IDX 1
#else
#define HI_IDX 1
#define LO_IDX 0
#endif
struct PPC_DFP {
CPUPPCState *env;
uint64_t t64[2], a64[2], b64[2];
decNumber t, a, b;
decContext context;
uint8_t crbf;
};
static void dfp_prepare_rounding_mode(decContext *context, uint64_t fpscr)
{
enum rounding rnd;
switch ((fpscr >> 32) & 0x7) {
case 0:
rnd = DEC_ROUND_HALF_EVEN;
break;
case 1:
rnd = DEC_ROUND_DOWN;
break;
case 2:
rnd = DEC_ROUND_CEILING;
break;
case 3:
rnd = DEC_ROUND_FLOOR;
break;
case 4:
rnd = DEC_ROUND_HALF_UP;
break;
case 5:
rnd = DEC_ROUND_HALF_DOWN;
break;
case 6:
rnd = DEC_ROUND_UP;
break;
case 7:
rnd = DEC_ROUND_05UP;
break;
default:
g_assert_not_reached();
}
decContextSetRounding(context, rnd);
}
static void dfp_set_round_mode_from_immediate(uint8_t r, uint8_t rmc,
struct PPC_DFP *dfp)
{
enum rounding rnd;
if (r == 0) {
switch (rmc & 3) {
case 0:
rnd = DEC_ROUND_HALF_EVEN;
break;
case 1:
rnd = DEC_ROUND_DOWN;
break;
case 2:
rnd = DEC_ROUND_HALF_UP;
break;
case 3: /* use FPSCR rounding mode */
return;
default:
assert(0); /* cannot get here */
}
} else { /* r == 1 */
switch (rmc & 3) {
case 0:
rnd = DEC_ROUND_CEILING;
break;
case 1:
rnd = DEC_ROUND_FLOOR;
break;
case 2:
rnd = DEC_ROUND_UP;
break;
case 3:
rnd = DEC_ROUND_HALF_DOWN;
break;
default:
assert(0); /* cannot get here */
}
}
decContextSetRounding(&dfp->context, rnd);
}
static void dfp_prepare_decimal64(struct PPC_DFP *dfp, uint64_t *a,
uint64_t *b, CPUPPCState *env)
{
decContextDefault(&dfp->context, DEC_INIT_DECIMAL64);
dfp_prepare_rounding_mode(&dfp->context, env->fpscr);
dfp->env = env;
if (a) {
dfp->a64[0] = *a;
decimal64ToNumber((decimal64 *)dfp->a64, &dfp->a);
} else {
dfp->a64[0] = 0;
decNumberZero(&dfp->a);
}
if (b) {
dfp->b64[0] = *b;
decimal64ToNumber((decimal64 *)dfp->b64, &dfp->b);
} else {
dfp->b64[0] = 0;
decNumberZero(&dfp->b);
}
}
static void dfp_prepare_decimal128(struct PPC_DFP *dfp, uint64_t *a,
uint64_t *b, CPUPPCState *env)
{
decContextDefault(&dfp->context, DEC_INIT_DECIMAL128);
dfp_prepare_rounding_mode(&dfp->context, env->fpscr);
dfp->env = env;
if (a) {
dfp->a64[0] = a[HI_IDX];
dfp->a64[1] = a[LO_IDX];
decimal128ToNumber((decimal128 *)dfp->a64, &dfp->a);
} else {
dfp->a64[0] = dfp->a64[1] = 0;
decNumberZero(&dfp->a);
}
if (b) {
dfp->b64[0] = b[HI_IDX];
dfp->b64[1] = b[LO_IDX];
decimal128ToNumber((decimal128 *)dfp->b64, &dfp->b);
} else {
dfp->b64[0] = dfp->b64[1] = 0;
decNumberZero(&dfp->b);
}
}
#define FP_FX (1ull << FPSCR_FX)
#define FP_FEX (1ull << FPSCR_FEX)
#define FP_OX (1ull << FPSCR_OX)
#define FP_OE (1ull << FPSCR_OE)
#define FP_UX (1ull << FPSCR_UX)
#define FP_UE (1ull << FPSCR_UE)
#define FP_XX (1ull << FPSCR_XX)
#define FP_XE (1ull << FPSCR_XE)
#define FP_ZX (1ull << FPSCR_ZX)
#define FP_ZE (1ull << FPSCR_ZE)
#define FP_VX (1ull << FPSCR_VX)
#define FP_VXSNAN (1ull << FPSCR_VXSNAN)
#define FP_VXISI (1ull << FPSCR_VXISI)
#define FP_VXIMZ (1ull << FPSCR_VXIMZ)
#define FP_VXZDZ (1ull << FPSCR_VXZDZ)
#define FP_VXIDI (1ull << FPSCR_VXIDI)
#define FP_VXVC (1ull << FPSCR_VXVC)
#define FP_VXCVI (1ull << FPSCR_VXCVI)
#define FP_VE (1ull << FPSCR_VE)
#define FP_FI (1ull << FPSCR_FI)
static void dfp_set_FPSCR_flag(struct PPC_DFP *dfp, uint64_t flag,
uint64_t enabled)
{
dfp->env->fpscr |= (flag | FP_FX);
if (dfp->env->fpscr & enabled) {
dfp->env->fpscr |= FP_FEX;
}
}
static void dfp_set_FPRF_from_FRT_with_context(struct PPC_DFP *dfp,
decContext *context)
{
uint64_t fprf = 0;
/* construct FPRF */
switch (decNumberClass(&dfp->t, context)) {
case DEC_CLASS_SNAN:
fprf = 0x01;
break;
case DEC_CLASS_QNAN:
fprf = 0x11;
break;
case DEC_CLASS_NEG_INF:
fprf = 0x09;
break;
case DEC_CLASS_NEG_NORMAL:
fprf = 0x08;
break;
case DEC_CLASS_NEG_SUBNORMAL:
fprf = 0x18;
break;
case DEC_CLASS_NEG_ZERO:
fprf = 0x12;
break;
case DEC_CLASS_POS_ZERO:
fprf = 0x02;
break;
case DEC_CLASS_POS_SUBNORMAL:
fprf = 0x14;
break;
case DEC_CLASS_POS_NORMAL:
fprf = 0x04;
break;
case DEC_CLASS_POS_INF:
fprf = 0x05;
break;
default:
assert(0); /* should never get here */
}
dfp->env->fpscr &= ~(0x1F << 12);
dfp->env->fpscr |= (fprf << 12);
}
static void dfp_set_FPRF_from_FRT(struct PPC_DFP *dfp)
{
dfp_set_FPRF_from_FRT_with_context(dfp, &dfp->context);
}
static void dfp_check_for_OX(struct PPC_DFP *dfp)
{
if (dfp->context.status & DEC_Overflow) {
dfp_set_FPSCR_flag(dfp, FP_OX, FP_OE);
}
}
static void dfp_check_for_UX(struct PPC_DFP *dfp)
{
if (dfp->context.status & DEC_Underflow) {
dfp_set_FPSCR_flag(dfp, FP_UX, FP_UE);
}
}
static void dfp_check_for_XX(struct PPC_DFP *dfp)
{
if (dfp->context.status & DEC_Inexact) {
dfp_set_FPSCR_flag(dfp, FP_XX | FP_FI, FP_XE);
}
}
static void dfp_check_for_ZX(struct PPC_DFP *dfp)
{
if (dfp->context.status & DEC_Division_by_zero) {
dfp_set_FPSCR_flag(dfp, FP_ZX, FP_ZE);
}
}
static void dfp_check_for_VXSNAN(struct PPC_DFP *dfp)
{
if (dfp->context.status & DEC_Invalid_operation) {
if (decNumberIsSNaN(&dfp->a) || decNumberIsSNaN(&dfp->b)) {
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXSNAN, FP_VE);
}
}
}
static void dfp_check_for_VXSNAN_and_convert_to_QNaN(struct PPC_DFP *dfp)
{
if (decNumberIsSNaN(&dfp->t)) {
dfp->t.bits &= ~DECSNAN;
dfp->t.bits |= DECNAN;
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXSNAN, FP_VE);
}
}
static void dfp_check_for_VXISI(struct PPC_DFP *dfp, int testForSameSign)
{
if (dfp->context.status & DEC_Invalid_operation) {
if (decNumberIsInfinite(&dfp->a) && decNumberIsInfinite(&dfp->b)) {
int same = decNumberClass(&dfp->a, &dfp->context) ==
decNumberClass(&dfp->b, &dfp->context);
if ((same && testForSameSign) || (!same && !testForSameSign)) {
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXISI, FP_VE);
}
}
}
}
static void dfp_check_for_VXISI_add(struct PPC_DFP *dfp)
{
dfp_check_for_VXISI(dfp, 0);
}
static void dfp_check_for_VXISI_subtract(struct PPC_DFP *dfp)
{
dfp_check_for_VXISI(dfp, 1);
}
static void dfp_check_for_VXIMZ(struct PPC_DFP *dfp)
{
if (dfp->context.status & DEC_Invalid_operation) {
if ((decNumberIsInfinite(&dfp->a) && decNumberIsZero(&dfp->b)) ||
(decNumberIsInfinite(&dfp->b) && decNumberIsZero(&dfp->a))) {
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXIMZ, FP_VE);
}
}
}
static void dfp_check_for_VXZDZ(struct PPC_DFP *dfp)
{
if (dfp->context.status & DEC_Division_undefined) {
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXZDZ, FP_VE);
}
}
static void dfp_check_for_VXIDI(struct PPC_DFP *dfp)
{
if (dfp->context.status & DEC_Invalid_operation) {
if (decNumberIsInfinite(&dfp->a) && decNumberIsInfinite(&dfp->b)) {
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXIDI, FP_VE);
}
}
}
static void dfp_check_for_VXVC(struct PPC_DFP *dfp)
{
if (decNumberIsNaN(&dfp->a) || decNumberIsNaN(&dfp->b)) {
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXVC, FP_VE);
}
}
static void dfp_check_for_VXCVI(struct PPC_DFP *dfp)
{
if ((dfp->context.status & DEC_Invalid_operation) &&
(!decNumberIsSNaN(&dfp->a)) &&
(!decNumberIsSNaN(&dfp->b))) {
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXCVI, FP_VE);
}
}
static void dfp_set_CRBF_from_T(struct PPC_DFP *dfp)
{
if (decNumberIsNaN(&dfp->t)) {
dfp->crbf = 1;
} else if (decNumberIsZero(&dfp->t)) {
dfp->crbf = 2;
} else if (decNumberIsNegative(&dfp->t)) {
dfp->crbf = 8;
} else {
dfp->crbf = 4;
}
}
static void dfp_set_FPCC_from_CRBF(struct PPC_DFP *dfp)
{
dfp->env->fpscr &= ~(0xF << 12);
dfp->env->fpscr |= (dfp->crbf << 12);
}
static inline void dfp_makeQNaN(decNumber *dn)
{
dn->bits &= ~DECSPECIAL;
dn->bits |= DECNAN;
}
static inline int dfp_get_digit(decNumber *dn, int n)
{
assert(DECDPUN == 3);
int unit = n / DECDPUN;
int dig = n % DECDPUN;
switch (dig) {
case 0:
return dn->lsu[unit] % 10;
case 1:
return (dn->lsu[unit] / 10) % 10;
case 2:
return dn->lsu[unit] / 100;
default:
assert(0);
}
}
#define DFP_HELPER_TAB(op, dnop, postprocs, size) \
void helper_##op(CPUPPCState *env, uint64_t *t, uint64_t *a, uint64_t *b) \
{ \
struct PPC_DFP dfp; \
dfp_prepare_decimal##size(&dfp, a, b, env); \
dnop(&dfp.t, &dfp.a, &dfp.b, &dfp.context); \
decimal##size##FromNumber((decimal##size *)dfp.t64, &dfp.t, &dfp.context); \
postprocs(&dfp); \
if (size == 64) { \
t[0] = dfp.t64[0]; \
} else if (size == 128) { \
t[0] = dfp.t64[HI_IDX]; \
t[1] = dfp.t64[LO_IDX]; \
} \
}
static void ADD_PPs(struct PPC_DFP *dfp)
{
dfp_set_FPRF_from_FRT(dfp);
dfp_check_for_OX(dfp);
dfp_check_for_UX(dfp);
dfp_check_for_XX(dfp);
dfp_check_for_VXSNAN(dfp);
dfp_check_for_VXISI_add(dfp);
}
DFP_HELPER_TAB(dadd, decNumberAdd, ADD_PPs, 64)
DFP_HELPER_TAB(daddq, decNumberAdd, ADD_PPs, 128)
static void SUB_PPs(struct PPC_DFP *dfp)
{
dfp_set_FPRF_from_FRT(dfp);
dfp_check_for_OX(dfp);
dfp_check_for_UX(dfp);
dfp_check_for_XX(dfp);
dfp_check_for_VXSNAN(dfp);
dfp_check_for_VXISI_subtract(dfp);
}
DFP_HELPER_TAB(dsub, decNumberSubtract, SUB_PPs, 64)
DFP_HELPER_TAB(dsubq, decNumberSubtract, SUB_PPs, 128)
static void MUL_PPs(struct PPC_DFP *dfp)
{
dfp_set_FPRF_from_FRT(dfp);
dfp_check_for_OX(dfp);
dfp_check_for_UX(dfp);
dfp_check_for_XX(dfp);
dfp_check_for_VXSNAN(dfp);
dfp_check_for_VXIMZ(dfp);
}
DFP_HELPER_TAB(dmul, decNumberMultiply, MUL_PPs, 64)
DFP_HELPER_TAB(dmulq, decNumberMultiply, MUL_PPs, 128)
static void DIV_PPs(struct PPC_DFP *dfp)
{
dfp_set_FPRF_from_FRT(dfp);
dfp_check_for_OX(dfp);
dfp_check_for_UX(dfp);
dfp_check_for_ZX(dfp);
dfp_check_for_XX(dfp);
dfp_check_for_VXSNAN(dfp);
dfp_check_for_VXZDZ(dfp);
dfp_check_for_VXIDI(dfp);
}
DFP_HELPER_TAB(ddiv, decNumberDivide, DIV_PPs, 64)
DFP_HELPER_TAB(ddivq, decNumberDivide, DIV_PPs, 128)
#define DFP_HELPER_BF_AB(op, dnop, postprocs, size) \
uint32_t helper_##op(CPUPPCState *env, uint64_t *a, uint64_t *b) \
{ \
struct PPC_DFP dfp; \
dfp_prepare_decimal##size(&dfp, a, b, env); \
dnop(&dfp.t, &dfp.a, &dfp.b, &dfp.context); \
decimal##size##FromNumber((decimal##size *)dfp.t64, &dfp.t, &dfp.context); \
postprocs(&dfp); \
return dfp.crbf; \
}
static void CMPU_PPs(struct PPC_DFP *dfp)
{
dfp_set_CRBF_from_T(dfp);
dfp_set_FPCC_from_CRBF(dfp);
dfp_check_for_VXSNAN(dfp);
}
DFP_HELPER_BF_AB(dcmpu, decNumberCompare, CMPU_PPs, 64)
DFP_HELPER_BF_AB(dcmpuq, decNumberCompare, CMPU_PPs, 128)
static void CMPO_PPs(struct PPC_DFP *dfp)
{
dfp_set_CRBF_from_T(dfp);
dfp_set_FPCC_from_CRBF(dfp);
dfp_check_for_VXSNAN(dfp);
dfp_check_for_VXVC(dfp);
}
DFP_HELPER_BF_AB(dcmpo, decNumberCompare, CMPO_PPs, 64)
DFP_HELPER_BF_AB(dcmpoq, decNumberCompare, CMPO_PPs, 128)
#define DFP_HELPER_TSTDC(op, size) \
uint32_t helper_##op(CPUPPCState *env, uint64_t *a, uint32_t dcm) \
{ \
struct PPC_DFP dfp; \
int match = 0; \
\
dfp_prepare_decimal##size(&dfp, a, 0, env); \
\
match |= (dcm & 0x20) && decNumberIsZero(&dfp.a); \
match |= (dcm & 0x10) && decNumberIsSubnormal(&dfp.a, &dfp.context); \
match |= (dcm & 0x08) && decNumberIsNormal(&dfp.a, &dfp.context); \
match |= (dcm & 0x04) && decNumberIsInfinite(&dfp.a); \
match |= (dcm & 0x02) && decNumberIsQNaN(&dfp.a); \
match |= (dcm & 0x01) && decNumberIsSNaN(&dfp.a); \
\
if (decNumberIsNegative(&dfp.a)) { \
dfp.crbf = match ? 0xA : 0x8; \
} else { \
dfp.crbf = match ? 0x2 : 0x0; \
} \
\
dfp_set_FPCC_from_CRBF(&dfp); \
return dfp.crbf; \
}
DFP_HELPER_TSTDC(dtstdc, 64)
DFP_HELPER_TSTDC(dtstdcq, 128)
#define DFP_HELPER_TSTDG(op, size) \
uint32_t helper_##op(CPUPPCState *env, uint64_t *a, uint32_t dcm) \
{ \
struct PPC_DFP dfp; \
int minexp, maxexp, nzero_digits, nzero_idx, is_negative, is_zero, \
is_extreme_exp, is_subnormal, is_normal, leftmost_is_nonzero, \
match; \
\
dfp_prepare_decimal##size(&dfp, a, 0, env); \
\
if ((size) == 64) { \
minexp = -398; \
maxexp = 369; \
nzero_digits = 16; \
nzero_idx = 5; \
} else if ((size) == 128) { \
minexp = -6176; \
maxexp = 6111; \
nzero_digits = 34; \
nzero_idx = 11; \
} \
\
is_negative = decNumberIsNegative(&dfp.a); \
is_zero = decNumberIsZero(&dfp.a); \
is_extreme_exp = (dfp.a.exponent == maxexp) || \
(dfp.a.exponent == minexp); \
is_subnormal = decNumberIsSubnormal(&dfp.a, &dfp.context); \
is_normal = decNumberIsNormal(&dfp.a, &dfp.context); \
leftmost_is_nonzero = (dfp.a.digits == nzero_digits) && \
(dfp.a.lsu[nzero_idx] != 0); \
match = 0; \
\
match |= (dcm & 0x20) && is_zero && !is_extreme_exp; \
match |= (dcm & 0x10) && is_zero && is_extreme_exp; \
match |= (dcm & 0x08) && \
(is_subnormal || (is_normal && is_extreme_exp)); \
match |= (dcm & 0x04) && is_normal && !is_extreme_exp && \
!leftmost_is_nonzero; \
match |= (dcm & 0x02) && is_normal && !is_extreme_exp && \
leftmost_is_nonzero; \
match |= (dcm & 0x01) && decNumberIsSpecial(&dfp.a); \
\
if (is_negative) { \
dfp.crbf = match ? 0xA : 0x8; \
} else { \
dfp.crbf = match ? 0x2 : 0x0; \
} \
\
dfp_set_FPCC_from_CRBF(&dfp); \
return dfp.crbf; \
}
DFP_HELPER_TSTDG(dtstdg, 64)
DFP_HELPER_TSTDG(dtstdgq, 128)
#define DFP_HELPER_TSTEX(op, size) \
uint32_t helper_##op(CPUPPCState *env, uint64_t *a, uint64_t *b) \
{ \
struct PPC_DFP dfp; \
int expa, expb, a_is_special, b_is_special; \
\
dfp_prepare_decimal##size(&dfp, a, b, env); \
\
expa = dfp.a.exponent; \
expb = dfp.b.exponent; \
a_is_special = decNumberIsSpecial(&dfp.a); \
b_is_special = decNumberIsSpecial(&dfp.b); \
\
if (a_is_special || b_is_special) { \
int atype = a_is_special ? (decNumberIsNaN(&dfp.a) ? 4 : 2) : 1; \
int btype = b_is_special ? (decNumberIsNaN(&dfp.b) ? 4 : 2) : 1; \
dfp.crbf = (atype ^ btype) ? 0x1 : 0x2; \
} else if (expa < expb) { \
dfp.crbf = 0x8; \
} else if (expa > expb) { \
dfp.crbf = 0x4; \
} else { \
dfp.crbf = 0x2; \
} \
\
dfp_set_FPCC_from_CRBF(&dfp); \
return dfp.crbf; \
}
DFP_HELPER_TSTEX(dtstex, 64)
DFP_HELPER_TSTEX(dtstexq, 128)
#define DFP_HELPER_TSTSF(op, size) \
uint32_t helper_##op(CPUPPCState *env, uint64_t *a, uint64_t *b) \
{ \
struct PPC_DFP dfp; \
unsigned k; \
\
dfp_prepare_decimal##size(&dfp, 0, b, env); \
\
k = *a & 0x3F; \
\
if (unlikely(decNumberIsSpecial(&dfp.b))) { \
dfp.crbf = 1; \
} else if (k == 0) { \
dfp.crbf = 4; \
} else if (unlikely(decNumberIsZero(&dfp.b))) { \
/* Zero has no sig digits */ \
dfp.crbf = 4; \
} else { \
unsigned nsd = dfp.b.digits; \
if (k < nsd) { \
dfp.crbf = 8; \
} else if (k > nsd) { \
dfp.crbf = 4; \
} else { \
dfp.crbf = 2; \
} \
} \
\
dfp_set_FPCC_from_CRBF(&dfp); \
return dfp.crbf; \
}
DFP_HELPER_TSTSF(dtstsf, 64)
DFP_HELPER_TSTSF(dtstsfq, 128)
static void QUA_PPs(struct PPC_DFP *dfp)
{
dfp_set_FPRF_from_FRT(dfp);
dfp_check_for_XX(dfp);
dfp_check_for_VXSNAN(dfp);
dfp_check_for_VXCVI(dfp);
}
static void dfp_quantize(uint8_t rmc, struct PPC_DFP *dfp)
{
dfp_set_round_mode_from_immediate(0, rmc, dfp);
decNumberQuantize(&dfp->t, &dfp->b, &dfp->a, &dfp->context);
if (decNumberIsSNaN(&dfp->a)) {
dfp->t = dfp->a;
dfp_makeQNaN(&dfp->t);
} else if (decNumberIsSNaN(&dfp->b)) {
dfp->t = dfp->b;
dfp_makeQNaN(&dfp->t);
} else if (decNumberIsQNaN(&dfp->a)) {
dfp->t = dfp->a;
} else if (decNumberIsQNaN(&dfp->b)) {
dfp->t = dfp->b;
}
}
#define DFP_HELPER_QUAI(op, size) \
void helper_##op(CPUPPCState *env, uint64_t *t, uint64_t *b, \
uint32_t te, uint32_t rmc) \
{ \
struct PPC_DFP dfp; \
\
dfp_prepare_decimal##size(&dfp, 0, b, env); \
\
decNumberFromUInt32(&dfp.a, 1); \
dfp.a.exponent = (int32_t)((int8_t)(te << 3) >> 3); \
\
dfp_quantize(rmc, &dfp); \
decimal##size##FromNumber((decimal##size *)dfp.t64, &dfp.t, \
&dfp.context); \
QUA_PPs(&dfp); \
\
if (size == 64) { \
t[0] = dfp.t64[0]; \
} else if (size == 128) { \
t[0] = dfp.t64[HI_IDX]; \
t[1] = dfp.t64[LO_IDX]; \
} \
}
DFP_HELPER_QUAI(dquai, 64)
DFP_HELPER_QUAI(dquaiq, 128)
#define DFP_HELPER_QUA(op, size) \
void helper_##op(CPUPPCState *env, uint64_t *t, uint64_t *a, \
uint64_t *b, uint32_t rmc) \
{ \
struct PPC_DFP dfp; \
\
dfp_prepare_decimal##size(&dfp, a, b, env); \
\
dfp_quantize(rmc, &dfp); \
decimal##size##FromNumber((decimal##size *)dfp.t64, &dfp.t, \
&dfp.context); \
QUA_PPs(&dfp); \
\
if (size == 64) { \
t[0] = dfp.t64[0]; \
} else if (size == 128) { \
t[0] = dfp.t64[HI_IDX]; \
t[1] = dfp.t64[LO_IDX]; \
} \
}
DFP_HELPER_QUA(dqua, 64)
DFP_HELPER_QUA(dquaq, 128)
static void _dfp_reround(uint8_t rmc, int32_t ref_sig, int32_t xmax,
struct PPC_DFP *dfp)
{
int msd_orig, msd_rslt;
if (unlikely((ref_sig == 0) || (dfp->b.digits <= ref_sig))) {
dfp->t = dfp->b;
if (decNumberIsSNaN(&dfp->b)) {
dfp_makeQNaN(&dfp->t);
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXSNAN, FPSCR_VE);
}
return;
}
/* Reround is equivalent to quantizing b with 1**E(n) where */
/* n = exp(b) + numDigits(b) - reference_significance. */
decNumberFromUInt32(&dfp->a, 1);
dfp->a.exponent = dfp->b.exponent + dfp->b.digits - ref_sig;
if (unlikely(dfp->a.exponent > xmax)) {
dfp->t.digits = 0;
dfp->t.bits &= ~DECNEG;
dfp_makeQNaN(&dfp->t);
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXCVI, FPSCR_VE);
return;
}
dfp_quantize(rmc, dfp);
msd_orig = dfp_get_digit(&dfp->b, dfp->b.digits-1);
msd_rslt = dfp_get_digit(&dfp->t, dfp->t.digits-1);
/* If the quantization resulted in rounding up to the next magnitude, */
/* then we need to shift the significand and adjust the exponent. */
if (unlikely((msd_orig == 9) && (msd_rslt == 1))) {
decNumber negone;
decNumberFromInt32(&negone, -1);
decNumberShift(&dfp->t, &dfp->t, &negone, &dfp->context);
dfp->t.exponent++;
if (unlikely(dfp->t.exponent > xmax)) {
dfp_makeQNaN(&dfp->t);
dfp->t.digits = 0;
dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXCVI, FP_VE);
/* Inhibit XX in this case */
decContextClearStatus(&dfp->context, DEC_Inexact);
}
}
}
#define DFP_HELPER_RRND(op, size) \
void helper_##op(CPUPPCState *env, uint64_t *t, uint64_t *a, \
uint64_t *b, uint32_t rmc) \
{ \
struct PPC_DFP dfp; \
int32_t ref_sig = *a & 0x3F; \
int32_t xmax = ((size) == 64) ? 369 : 6111; \
\
dfp_prepare_decimal##size(&dfp, 0, b, env); \
\
_dfp_reround(rmc, ref_sig, xmax, &dfp); \
decimal##size##FromNumber((decimal##size *)dfp.t64, &dfp.t, \
&dfp.context); \
QUA_PPs(&dfp); \
\
if (size == 64) { \
t[0] = dfp.t64[0]; \
} else if (size == 128) { \
t[0] = dfp.t64[HI_IDX]; \
t[1] = dfp.t64[LO_IDX]; \
} \
}
DFP_HELPER_RRND(drrnd, 64)
DFP_HELPER_RRND(drrndq, 128)
#define DFP_HELPER_RINT(op, postprocs, size) \
void helper_##op(CPUPPCState *env, uint64_t *t, uint64_t *b, \
uint32_t r, uint32_t rmc) \
{ \
struct PPC_DFP dfp; \
\
dfp_prepare_decimal##size(&dfp, 0, b, env); \
\
dfp_set_round_mode_from_immediate(r, rmc, &dfp); \
decNumberToIntegralExact(&dfp.t, &dfp.b, &dfp.context); \
decimal##size##FromNumber((decimal##size *)dfp.t64, &dfp.t, &dfp.context); \
postprocs(&dfp); \
\
if (size == 64) { \
t[0] = dfp.t64[0]; \
} else if (size == 128) { \
t[0] = dfp.t64[HI_IDX]; \
t[1] = dfp.t64[LO_IDX]; \
} \
}
static void RINTX_PPs(struct PPC_DFP *dfp)
{
dfp_set_FPRF_from_FRT(dfp);
dfp_check_for_XX(dfp);
dfp_check_for_VXSNAN(dfp);
}
DFP_HELPER_RINT(drintx, RINTX_PPs, 64)
DFP_HELPER_RINT(drintxq, RINTX_PPs, 128)
static void RINTN_PPs(struct PPC_DFP *dfp)
{
dfp_set_FPRF_from_FRT(dfp);
dfp_check_for_VXSNAN(dfp);
}
DFP_HELPER_RINT(drintn, RINTN_PPs, 64)
DFP_HELPER_RINT(drintnq, RINTN_PPs, 128)
void helper_dctdp(CPUPPCState *env, uint64_t *t, uint64_t *b)
{
struct PPC_DFP dfp;
uint32_t b_short = *b;
dfp_prepare_decimal64(&dfp, 0, 0, env);
decimal32ToNumber((decimal32 *)&b_short, &dfp.t);
decimal64FromNumber((decimal64 *)t, &dfp.t, &dfp.context);
dfp_set_FPRF_from_FRT(&dfp);
}
void helper_dctqpq(CPUPPCState *env, uint64_t *t, uint64_t *b)
{
struct PPC_DFP dfp;
dfp_prepare_decimal128(&dfp, 0, 0, env);
decimal64ToNumber((decimal64 *)b, &dfp.t);
dfp_check_for_VXSNAN_and_convert_to_QNaN(&dfp);
dfp_set_FPRF_from_FRT(&dfp);
decimal128FromNumber((decimal128 *)&dfp.t64, &dfp.t, &dfp.context);
t[0] = dfp.t64[HI_IDX];
t[1] = dfp.t64[LO_IDX];
}
|