aboutsummaryrefslogtreecommitdiff
path: root/target-m68k/helper.c
blob: 674c8e6f071d86d557d5bc957098ba27902133b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
/*
 *  m68k op helpers
 *
 *  Copyright (c) 2006-2007 CodeSourcery
 *  Written by Paul Brook
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include <stdio.h>
#include <string.h>

#include "config.h"
#include "cpu.h"
#include "qemu-common.h"
#include "gdbstub.h"

#include "helpers.h"

#define SIGNBIT (1u << 31)

enum m68k_cpuid {
    M68K_CPUID_M5206,
    M68K_CPUID_M5208,
    M68K_CPUID_CFV4E,
    M68K_CPUID_ANY,
};

typedef struct m68k_def_t m68k_def_t;

struct m68k_def_t {
    const char * name;
    enum m68k_cpuid id;
};

static m68k_def_t m68k_cpu_defs[] = {
    {"m5206", M68K_CPUID_M5206},
    {"m5208", M68K_CPUID_M5208},
    {"cfv4e", M68K_CPUID_CFV4E},
    {"any", M68K_CPUID_ANY},
    {NULL, 0},
};

void m68k_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
    unsigned int i;

    for (i = 0; m68k_cpu_defs[i].name; i++) {
        (*cpu_fprintf)(f, "%s\n", m68k_cpu_defs[i].name);
    }
}

static int fpu_gdb_get_reg(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        stfq_p(mem_buf, env->fregs[n]);
        return 8;
    }
    if (n < 11) {
        /* FP control registers (not implemented)  */
        memset(mem_buf, 0, 4);
        return 4;
    }
    return 0;
}

static int fpu_gdb_set_reg(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        env->fregs[n] = ldfq_p(mem_buf);
        return 8;
    }
    if (n < 11) {
        /* FP control registers (not implemented)  */
        return 4;
    }
    return 0;
}

static void m68k_set_feature(CPUM68KState *env, int feature)
{
    env->features |= (1u << feature);
}

static int cpu_m68k_set_model(CPUM68KState *env, const char *name)
{
    m68k_def_t *def;

    for (def = m68k_cpu_defs; def->name; def++) {
        if (strcmp(def->name, name) == 0)
            break;
    }
    if (!def->name)
        return -1;

    switch (def->id) {
    case M68K_CPUID_M5206:
        m68k_set_feature(env, M68K_FEATURE_CF_ISA_A);
        break;
    case M68K_CPUID_M5208:
        m68k_set_feature(env, M68K_FEATURE_CF_ISA_A);
        m68k_set_feature(env, M68K_FEATURE_CF_ISA_APLUSC);
        m68k_set_feature(env, M68K_FEATURE_BRAL);
        m68k_set_feature(env, M68K_FEATURE_CF_EMAC);
        m68k_set_feature(env, M68K_FEATURE_USP);
        break;
    case M68K_CPUID_CFV4E:
        m68k_set_feature(env, M68K_FEATURE_CF_ISA_A);
        m68k_set_feature(env, M68K_FEATURE_CF_ISA_B);
        m68k_set_feature(env, M68K_FEATURE_BRAL);
        m68k_set_feature(env, M68K_FEATURE_CF_FPU);
        m68k_set_feature(env, M68K_FEATURE_CF_EMAC);
        m68k_set_feature(env, M68K_FEATURE_USP);
        break;
    case M68K_CPUID_ANY:
        m68k_set_feature(env, M68K_FEATURE_CF_ISA_A);
        m68k_set_feature(env, M68K_FEATURE_CF_ISA_B);
        m68k_set_feature(env, M68K_FEATURE_CF_ISA_APLUSC);
        m68k_set_feature(env, M68K_FEATURE_BRAL);
        m68k_set_feature(env, M68K_FEATURE_CF_FPU);
        /* MAC and EMAC are mututally exclusive, so pick EMAC.
           It's mostly backwards compatible.  */
        m68k_set_feature(env, M68K_FEATURE_CF_EMAC);
        m68k_set_feature(env, M68K_FEATURE_CF_EMAC_B);
        m68k_set_feature(env, M68K_FEATURE_USP);
        m68k_set_feature(env, M68K_FEATURE_EXT_FULL);
        m68k_set_feature(env, M68K_FEATURE_WORD_INDEX);
        break;
    }

    register_m68k_insns(env);
    if (m68k_feature (env, M68K_FEATURE_CF_FPU)) {
        gdb_register_coprocessor(env, fpu_gdb_get_reg, fpu_gdb_set_reg,
                                 11, "cf-fp.xml", 18);
    }
    /* TODO: Add [E]MAC registers.  */
    return 0;
}

void cpu_reset(CPUM68KState *env)
{
    if (qemu_loglevel_mask(CPU_LOG_RESET)) {
        qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
        log_cpu_state(env, 0);
    }

    memset(env, 0, offsetof(CPUM68KState, breakpoints));
#if !defined (CONFIG_USER_ONLY)
    env->sr = 0x2700;
#endif
    m68k_switch_sp(env);
    /* ??? FP regs should be initialized to NaN.  */
    env->cc_op = CC_OP_FLAGS;
    /* TODO: We should set PC from the interrupt vector.  */
    env->pc = 0;
    tlb_flush(env, 1);
}

CPUM68KState *cpu_m68k_init(const char *cpu_model)
{
    CPUM68KState *env;
    static int inited;

    env = g_malloc0(sizeof(CPUM68KState));
    cpu_exec_init(env);
    if (!inited) {
        inited = 1;
        m68k_tcg_init();
    }

    env->cpu_model_str = cpu_model;

    if (cpu_m68k_set_model(env, cpu_model) < 0) {
        cpu_m68k_close(env);
        return NULL;
    }

    cpu_reset(env);
    qemu_init_vcpu(env);
    return env;
}

void cpu_m68k_close(CPUM68KState *env)
{
    g_free(env);
}

void cpu_m68k_flush_flags(CPUM68KState *env, int cc_op)
{
    int flags;
    uint32_t src;
    uint32_t dest;
    uint32_t tmp;

#define HIGHBIT 0x80000000u

#define SET_NZ(x) do { \
    if ((x) == 0) \
        flags |= CCF_Z; \
    else if ((int32_t)(x) < 0) \
        flags |= CCF_N; \
    } while (0)

#define SET_FLAGS_SUB(type, utype) do { \
    SET_NZ((type)dest); \
    tmp = dest + src; \
    if ((utype) tmp < (utype) src) \
        flags |= CCF_C; \
    if ((1u << (sizeof(type) * 8 - 1)) & (tmp ^ dest) & (tmp ^ src)) \
        flags |= CCF_V; \
    } while (0)

    flags = 0;
    src = env->cc_src;
    dest = env->cc_dest;
    switch (cc_op) {
    case CC_OP_FLAGS:
        flags = dest;
        break;
    case CC_OP_LOGIC:
        SET_NZ(dest);
        break;
    case CC_OP_ADD:
        SET_NZ(dest);
        if (dest < src)
            flags |= CCF_C;
        tmp = dest - src;
        if (HIGHBIT & (src ^ dest) & ~(tmp ^ src))
            flags |= CCF_V;
        break;
    case CC_OP_SUB:
        SET_FLAGS_SUB(int32_t, uint32_t);
        break;
    case CC_OP_CMPB:
        SET_FLAGS_SUB(int8_t, uint8_t);
        break;
    case CC_OP_CMPW:
        SET_FLAGS_SUB(int16_t, uint16_t);
        break;
    case CC_OP_ADDX:
        SET_NZ(dest);
        if (dest <= src)
            flags |= CCF_C;
        tmp = dest - src - 1;
        if (HIGHBIT & (src ^ dest) & ~(tmp ^ src))
            flags |= CCF_V;
        break;
    case CC_OP_SUBX:
        SET_NZ(dest);
        tmp = dest + src + 1;
        if (tmp <= src)
            flags |= CCF_C;
        if (HIGHBIT & (tmp ^ dest) & (tmp ^ src))
            flags |= CCF_V;
        break;
    case CC_OP_SHIFT:
        SET_NZ(dest);
        if (src)
            flags |= CCF_C;
        break;
    default:
        cpu_abort(env, "Bad CC_OP %d", cc_op);
    }
    env->cc_op = CC_OP_FLAGS;
    env->cc_dest = flags;
}

void HELPER(movec)(CPUM68KState *env, uint32_t reg, uint32_t val)
{
    switch (reg) {
    case 0x02: /* CACR */
        env->cacr = val;
        m68k_switch_sp(env);
        break;
    case 0x04: case 0x05: case 0x06: case 0x07: /* ACR[0-3] */
        /* TODO: Implement Access Control Registers.  */
        break;
    case 0x801: /* VBR */
        env->vbr = val;
        break;
    /* TODO: Implement control registers.  */
    default:
        cpu_abort(env, "Unimplemented control register write 0x%x = 0x%x\n",
                  reg, val);
    }
}

void HELPER(set_macsr)(CPUM68KState *env, uint32_t val)
{
    uint32_t acc;
    int8_t exthigh;
    uint8_t extlow;
    uint64_t regval;
    int i;
    if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) {
        for (i = 0; i < 4; i++) {
            regval = env->macc[i];
            exthigh = regval >> 40;
            if (env->macsr & MACSR_FI) {
                acc = regval >> 8;
                extlow = regval;
            } else {
                acc = regval;
                extlow = regval >> 32;
            }
            if (env->macsr & MACSR_FI) {
                regval = (((uint64_t)acc) << 8) | extlow;
                regval |= ((int64_t)exthigh) << 40;
            } else if (env->macsr & MACSR_SU) {
                regval = acc | (((int64_t)extlow) << 32);
                regval |= ((int64_t)exthigh) << 40;
            } else {
                regval = acc | (((uint64_t)extlow) << 32);
                regval |= ((uint64_t)(uint8_t)exthigh) << 40;
            }
            env->macc[i] = regval;
        }
    }
    env->macsr = val;
}

void m68k_switch_sp(CPUM68KState *env)
{
    int new_sp;

    env->sp[env->current_sp] = env->aregs[7];
    new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP)
             ? M68K_SSP : M68K_USP;
    env->aregs[7] = env->sp[new_sp];
    env->current_sp = new_sp;
}

#if defined(CONFIG_USER_ONLY)

int cpu_m68k_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
                               int mmu_idx)
{
    env->exception_index = EXCP_ACCESS;
    env->mmu.ar = address;
    return 1;
}

#else

/* MMU */

/* TODO: This will need fixing once the MMU is implemented.  */
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
    return addr;
}

int cpu_m68k_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
                               int mmu_idx)
{
    int prot;

    address &= TARGET_PAGE_MASK;
    prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    tlb_set_page(env, address, address, prot, mmu_idx, TARGET_PAGE_SIZE);
    return 0;
}

/* Notify CPU of a pending interrupt.  Prioritization and vectoring should
   be handled by the interrupt controller.  Real hardware only requests
   the vector when the interrupt is acknowledged by the CPU.  For
   simplicitly we calculate it when the interrupt is signalled.  */
void m68k_set_irq_level(CPUM68KState *env, int level, uint8_t vector)
{
    env->pending_level = level;
    env->pending_vector = vector;
    if (level)
        cpu_interrupt(env, CPU_INTERRUPT_HARD);
    else
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}

#endif

uint32_t HELPER(bitrev)(uint32_t x)
{
    x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau);
    x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu);
    x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u);
    return bswap32(x);
}

uint32_t HELPER(ff1)(uint32_t x)
{
    int n;
    for (n = 32; x; n--)
        x >>= 1;
    return n;
}

uint32_t HELPER(sats)(uint32_t val, uint32_t ccr)
{
    /* The result has the opposite sign to the original value.  */
    if (ccr & CCF_V)
        val = (((int32_t)val) >> 31) ^ SIGNBIT;
    return val;
}

uint32_t HELPER(subx_cc)(CPUState *env, uint32_t op1, uint32_t op2)
{
    uint32_t res;
    uint32_t old_flags;

    old_flags = env->cc_dest;
    if (env->cc_x) {
        env->cc_x = (op1 <= op2);
        env->cc_op = CC_OP_SUBX;
        res = op1 - (op2 + 1);
    } else {
        env->cc_x = (op1 < op2);
        env->cc_op = CC_OP_SUB;
        res = op1 - op2;
    }
    env->cc_dest = res;
    env->cc_src = op2;
    cpu_m68k_flush_flags(env, env->cc_op);
    /* !Z is sticky.  */
    env->cc_dest &= (old_flags | ~CCF_Z);
    return res;
}

uint32_t HELPER(addx_cc)(CPUState *env, uint32_t op1, uint32_t op2)
{
    uint32_t res;
    uint32_t old_flags;

    old_flags = env->cc_dest;
    if (env->cc_x) {
        res = op1 + op2 + 1;
        env->cc_x = (res <= op2);
        env->cc_op = CC_OP_ADDX;
    } else {
        res = op1 + op2;
        env->cc_x = (res < op2);
        env->cc_op = CC_OP_ADD;
    }
    env->cc_dest = res;
    env->cc_src = op2;
    cpu_m68k_flush_flags(env, env->cc_op);
    /* !Z is sticky.  */
    env->cc_dest &= (old_flags | ~CCF_Z);
    return res;
}

uint32_t HELPER(xflag_lt)(uint32_t a, uint32_t b)
{
    return a < b;
}

void HELPER(set_sr)(CPUState *env, uint32_t val)
{
    env->sr = val & 0xffff;
    m68k_switch_sp(env);
}

uint32_t HELPER(shl_cc)(CPUState *env, uint32_t val, uint32_t shift)
{
    uint32_t result;
    uint32_t cf;

    shift &= 63;
    if (shift == 0) {
        result = val;
        cf = env->cc_src & CCF_C;
    } else if (shift < 32) {
        result = val << shift;
        cf = (val >> (32 - shift)) & 1;
    } else if (shift == 32) {
        result = 0;
        cf = val & 1;
    } else /* shift > 32 */ {
        result = 0;
        cf = 0;
    }
    env->cc_src = cf;
    env->cc_x = (cf != 0);
    env->cc_dest = result;
    return result;
}

uint32_t HELPER(shr_cc)(CPUState *env, uint32_t val, uint32_t shift)
{
    uint32_t result;
    uint32_t cf;

    shift &= 63;
    if (shift == 0) {
        result = val;
        cf = env->cc_src & CCF_C;
    } else if (shift < 32) {
        result = val >> shift;
        cf = (val >> (shift - 1)) & 1;
    } else if (shift == 32) {
        result = 0;
        cf = val >> 31;
    } else /* shift > 32 */ {
        result = 0;
        cf = 0;
    }
    env->cc_src = cf;
    env->cc_x = (cf != 0);
    env->cc_dest = result;
    return result;
}

uint32_t HELPER(sar_cc)(CPUState *env, uint32_t val, uint32_t shift)
{
    uint32_t result;
    uint32_t cf;

    shift &= 63;
    if (shift == 0) {
        result = val;
        cf = (env->cc_src & CCF_C) != 0;
    } else if (shift < 32) {
        result = (int32_t)val >> shift;
        cf = (val >> (shift - 1)) & 1;
    } else /* shift >= 32 */ {
        result = (int32_t)val >> 31;
        cf = val >> 31;
    }
    env->cc_src = cf;
    env->cc_x = cf;
    env->cc_dest = result;
    return result;
}

/* FPU helpers.  */
uint32_t HELPER(f64_to_i32)(CPUState *env, float64 val)
{
    return float64_to_int32(val, &env->fp_status);
}

float32 HELPER(f64_to_f32)(CPUState *env, float64 val)
{
    return float64_to_float32(val, &env->fp_status);
}

float64 HELPER(i32_to_f64)(CPUState *env, uint32_t val)
{
    return int32_to_float64(val, &env->fp_status);
}

float64 HELPER(f32_to_f64)(CPUState *env, float32 val)
{
    return float32_to_float64(val, &env->fp_status);
}

float64 HELPER(iround_f64)(CPUState *env, float64 val)
{
    return float64_round_to_int(val, &env->fp_status);
}

float64 HELPER(itrunc_f64)(CPUState *env, float64 val)
{
    return float64_trunc_to_int(val, &env->fp_status);
}

float64 HELPER(sqrt_f64)(CPUState *env, float64 val)
{
    return float64_sqrt(val, &env->fp_status);
}

float64 HELPER(abs_f64)(float64 val)
{
    return float64_abs(val);
}

float64 HELPER(chs_f64)(float64 val)
{
    return float64_chs(val);
}

float64 HELPER(add_f64)(CPUState *env, float64 a, float64 b)
{
    return float64_add(a, b, &env->fp_status);
}

float64 HELPER(sub_f64)(CPUState *env, float64 a, float64 b)
{
    return float64_sub(a, b, &env->fp_status);
}

float64 HELPER(mul_f64)(CPUState *env, float64 a, float64 b)
{
    return float64_mul(a, b, &env->fp_status);
}

float64 HELPER(div_f64)(CPUState *env, float64 a, float64 b)
{
    return float64_div(a, b, &env->fp_status);
}

float64 HELPER(sub_cmp_f64)(CPUState *env, float64 a, float64 b)
{
    /* ??? This may incorrectly raise exceptions.  */
    /* ??? Should flush denormals to zero.  */
    float64 res;
    res = float64_sub(a, b, &env->fp_status);
    if (float64_is_quiet_nan(res)) {
        /* +/-inf compares equal against itself, but sub returns nan.  */
        if (!float64_is_quiet_nan(a)
            && !float64_is_quiet_nan(b)) {
            res = float64_zero;
            if (float64_lt_quiet(a, res, &env->fp_status))
                res = float64_chs(res);
        }
    }
    return res;
}

uint32_t HELPER(compare_f64)(CPUState *env, float64 val)
{
    return float64_compare_quiet(val, float64_zero, &env->fp_status);
}

/* MAC unit.  */
/* FIXME: The MAC unit implementation is a bit of a mess.  Some helpers
   take values,  others take register numbers and manipulate the contents
   in-place.  */
void HELPER(mac_move)(CPUState *env, uint32_t dest, uint32_t src)
{
    uint32_t mask;
    env->macc[dest] = env->macc[src];
    mask = MACSR_PAV0 << dest;
    if (env->macsr & (MACSR_PAV0 << src))
        env->macsr |= mask;
    else
        env->macsr &= ~mask;
}

uint64_t HELPER(macmuls)(CPUState *env, uint32_t op1, uint32_t op2)
{
    int64_t product;
    int64_t res;

    product = (uint64_t)op1 * op2;
    res = (product << 24) >> 24;
    if (res != product) {
        env->macsr |= MACSR_V;
        if (env->macsr & MACSR_OMC) {
            /* Make sure the accumulate operation overflows.  */
            if (product < 0)
                res = ~(1ll << 50);
            else
                res = 1ll << 50;
        }
    }
    return res;
}

uint64_t HELPER(macmulu)(CPUState *env, uint32_t op1, uint32_t op2)
{
    uint64_t product;

    product = (uint64_t)op1 * op2;
    if (product & (0xffffffull << 40)) {
        env->macsr |= MACSR_V;
        if (env->macsr & MACSR_OMC) {
            /* Make sure the accumulate operation overflows.  */
            product = 1ll << 50;
        } else {
            product &= ((1ull << 40) - 1);
        }
    }
    return product;
}

uint64_t HELPER(macmulf)(CPUState *env, uint32_t op1, uint32_t op2)
{
    uint64_t product;
    uint32_t remainder;

    product = (uint64_t)op1 * op2;
    if (env->macsr & MACSR_RT) {
        remainder = product & 0xffffff;
        product >>= 24;
        if (remainder > 0x800000)
            product++;
        else if (remainder == 0x800000)
            product += (product & 1);
    } else {
        product >>= 24;
    }
    return product;
}

void HELPER(macsats)(CPUState *env, uint32_t acc)
{
    int64_t tmp;
    int64_t result;
    tmp = env->macc[acc];
    result = ((tmp << 16) >> 16);
    if (result != tmp) {
        env->macsr |= MACSR_V;
    }
    if (env->macsr & MACSR_V) {
        env->macsr |= MACSR_PAV0 << acc;
        if (env->macsr & MACSR_OMC) {
            /* The result is saturated to 32 bits, despite overflow occurring
               at 48 bits.  Seems weird, but that's what the hardware docs
               say.  */
            result = (result >> 63) ^ 0x7fffffff;
        }
    }
    env->macc[acc] = result;
}

void HELPER(macsatu)(CPUState *env, uint32_t acc)
{
    uint64_t val;

    val = env->macc[acc];
    if (val & (0xffffull << 48)) {
        env->macsr |= MACSR_V;
    }
    if (env->macsr & MACSR_V) {
        env->macsr |= MACSR_PAV0 << acc;
        if (env->macsr & MACSR_OMC) {
            if (val > (1ull << 53))
                val = 0;
            else
                val = (1ull << 48) - 1;
        } else {
            val &= ((1ull << 48) - 1);
        }
    }
    env->macc[acc] = val;
}

void HELPER(macsatf)(CPUState *env, uint32_t acc)
{
    int64_t sum;
    int64_t result;

    sum = env->macc[acc];
    result = (sum << 16) >> 16;
    if (result != sum) {
        env->macsr |= MACSR_V;
    }
    if (env->macsr & MACSR_V) {
        env->macsr |= MACSR_PAV0 << acc;
        if (env->macsr & MACSR_OMC) {
            result = (result >> 63) ^ 0x7fffffffffffll;
        }
    }
    env->macc[acc] = result;
}

void HELPER(mac_set_flags)(CPUState *env, uint32_t acc)
{
    uint64_t val;
    val = env->macc[acc];
    if (val == 0) {
        env->macsr |= MACSR_Z;
    } else if (val & (1ull << 47)) {
        env->macsr |= MACSR_N;
    }
    if (env->macsr & (MACSR_PAV0 << acc)) {
        env->macsr |= MACSR_V;
    }
    if (env->macsr & MACSR_FI) {
        val = ((int64_t)val) >> 40;
        if (val != 0 && val != -1)
            env->macsr |= MACSR_EV;
    } else if (env->macsr & MACSR_SU) {
        val = ((int64_t)val) >> 32;
        if (val != 0 && val != -1)
            env->macsr |= MACSR_EV;
    } else {
        if ((val >> 32) != 0)
            env->macsr |= MACSR_EV;
    }
}

void HELPER(flush_flags)(CPUState *env, uint32_t cc_op)
{
    cpu_m68k_flush_flags(env, cc_op);
}

uint32_t HELPER(get_macf)(CPUState *env, uint64_t val)
{
    int rem;
    uint32_t result;

    if (env->macsr & MACSR_SU) {
        /* 16-bit rounding.  */
        rem = val & 0xffffff;
        val = (val >> 24) & 0xffffu;
        if (rem > 0x800000)
            val++;
        else if (rem == 0x800000)
            val += (val & 1);
    } else if (env->macsr & MACSR_RT) {
        /* 32-bit rounding.  */
        rem = val & 0xff;
        val >>= 8;
        if (rem > 0x80)
            val++;
        else if (rem == 0x80)
            val += (val & 1);
    } else {
        /* No rounding.  */
        val >>= 8;
    }
    if (env->macsr & MACSR_OMC) {
        /* Saturate.  */
        if (env->macsr & MACSR_SU) {
            if (val != (uint16_t) val) {
                result = ((val >> 63) ^ 0x7fff) & 0xffff;
            } else {
                result = val & 0xffff;
            }
        } else {
            if (val != (uint32_t)val) {
                result = ((uint32_t)(val >> 63) & 0x7fffffff);
            } else {
                result = (uint32_t)val;
            }
        }
    } else {
        /* No saturation.  */
        if (env->macsr & MACSR_SU) {
            result = val & 0xffff;
        } else {
            result = (uint32_t)val;
        }
    }
    return result;
}

uint32_t HELPER(get_macs)(uint64_t val)
{
    if (val == (int32_t)val) {
        return (int32_t)val;
    } else {
        return (val >> 61) ^ ~SIGNBIT;
    }
}

uint32_t HELPER(get_macu)(uint64_t val)
{
    if ((val >> 32) == 0) {
        return (uint32_t)val;
    } else {
        return 0xffffffffu;
    }
}

uint32_t HELPER(get_mac_extf)(CPUState *env, uint32_t acc)
{
    uint32_t val;
    val = env->macc[acc] & 0x00ff;
    val = (env->macc[acc] >> 32) & 0xff00;
    val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
    val |= (env->macc[acc + 1] >> 16) & 0xff000000;
    return val;
}

uint32_t HELPER(get_mac_exti)(CPUState *env, uint32_t acc)
{
    uint32_t val;
    val = (env->macc[acc] >> 32) & 0xffff;
    val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
    return val;
}

void HELPER(set_mac_extf)(CPUState *env, uint32_t val, uint32_t acc)
{
    int64_t res;
    int32_t tmp;
    res = env->macc[acc] & 0xffffffff00ull;
    tmp = (int16_t)(val & 0xff00);
    res |= ((int64_t)tmp) << 32;
    res |= val & 0xff;
    env->macc[acc] = res;
    res = env->macc[acc + 1] & 0xffffffff00ull;
    tmp = (val & 0xff000000);
    res |= ((int64_t)tmp) << 16;
    res |= (val >> 16) & 0xff;
    env->macc[acc + 1] = res;
}

void HELPER(set_mac_exts)(CPUState *env, uint32_t val, uint32_t acc)
{
    int64_t res;
    int32_t tmp;
    res = (uint32_t)env->macc[acc];
    tmp = (int16_t)val;
    res |= ((int64_t)tmp) << 32;
    env->macc[acc] = res;
    res = (uint32_t)env->macc[acc + 1];
    tmp = val & 0xffff0000;
    res |= (int64_t)tmp << 16;
    env->macc[acc + 1] = res;
}

void HELPER(set_mac_extu)(CPUState *env, uint32_t val, uint32_t acc)
{
    uint64_t res;
    res = (uint32_t)env->macc[acc];
    res |= ((uint64_t)(val & 0xffff)) << 32;
    env->macc[acc] = res;
    res = (uint32_t)env->macc[acc + 1];
    res |= (uint64_t)(val & 0xffff0000) << 16;
    env->macc[acc + 1] = res;
}