1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
/*
* i386 execution defines
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "dyngen-exec.h"
/* XXX: factorize this mess */
#ifdef TARGET_X86_64
#define TARGET_LONG_BITS 64
#else
#define TARGET_LONG_BITS 32
#endif
#include "cpu-defs.h"
/* at least 4 register variables are defined */
register struct CPUX86State *env asm(AREG0);
#ifndef CPU_NO_GLOBAL_REGS
#if TARGET_LONG_BITS > HOST_LONG_BITS
/* no registers can be used */
#define T0 (env->t0)
#define T1 (env->t1)
#define T2 (env->t2)
#else
/* XXX: use unsigned long instead of target_ulong - better code will
be generated for 64 bit CPUs */
register target_ulong T0 asm(AREG1);
register target_ulong T1 asm(AREG2);
register target_ulong T2 asm(AREG3);
#endif /* ! (TARGET_LONG_BITS > HOST_LONG_BITS) */
#endif /* ! CPU_NO_GLOBAL_REGS */
#define A0 T2
extern FILE *logfile;
extern int loglevel;
#ifndef reg_EAX
#define EAX (env->regs[R_EAX])
#endif
#ifndef reg_ECX
#define ECX (env->regs[R_ECX])
#endif
#ifndef reg_EDX
#define EDX (env->regs[R_EDX])
#endif
#ifndef reg_EBX
#define EBX (env->regs[R_EBX])
#endif
#ifndef reg_ESP
#define ESP (env->regs[R_ESP])
#endif
#ifndef reg_EBP
#define EBP (env->regs[R_EBP])
#endif
#ifndef reg_ESI
#define ESI (env->regs[R_ESI])
#endif
#ifndef reg_EDI
#define EDI (env->regs[R_EDI])
#endif
#define EIP (env->eip)
#define DF (env->df)
#define CC_SRC (env->cc_src)
#define CC_DST (env->cc_dst)
#define CC_OP (env->cc_op)
/* float macros */
#define FT0 (env->ft0)
#define ST0 (env->fpregs[env->fpstt].d)
#define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
#define ST1 ST(1)
#include "cpu.h"
#include "exec-all.h"
typedef struct CCTable {
int (*compute_all)(void); /* return all the flags */
int (*compute_c)(void); /* return the C flag */
} CCTable;
extern CCTable cc_table[];
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
void cpu_x86_flush_tlb(CPUX86State *env, target_ulong addr);
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write, int mmu_idx, int is_softmmu);
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
void *retaddr);
void __hidden cpu_lock(void);
void __hidden cpu_unlock(void);
void do_interrupt(int intno, int is_int, int error_code,
target_ulong next_eip, int is_hw);
void do_interrupt_user(int intno, int is_int, int error_code,
target_ulong next_eip);
void raise_interrupt(int intno, int is_int, int error_code,
int next_eip_addend);
void raise_exception_err(int exception_index, int error_code);
void raise_exception(int exception_index);
void do_smm_enter(void);
void __hidden cpu_loop_exit(void);
void OPPROTO op_movl_eflags_T0(void);
void OPPROTO op_movl_T0_eflags(void);
#include "helper.h"
static inline void svm_check_intercept(uint32_t type)
{
helper_svm_check_intercept_param(type, 0);
}
#if !defined(CONFIG_USER_ONLY)
#include "softmmu_exec.h"
#endif /* !defined(CONFIG_USER_ONLY) */
#ifdef USE_X86LDOUBLE
/* use long double functions */
#define floatx_to_int32 floatx80_to_int32
#define floatx_to_int64 floatx80_to_int64
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
#define int32_to_floatx int32_to_floatx80
#define int64_to_floatx int64_to_floatx80
#define float32_to_floatx float32_to_floatx80
#define float64_to_floatx float64_to_floatx80
#define floatx_to_float32 floatx80_to_float32
#define floatx_to_float64 floatx80_to_float64
#define floatx_abs floatx80_abs
#define floatx_chs floatx80_chs
#define floatx_round_to_int floatx80_round_to_int
#define floatx_compare floatx80_compare
#define floatx_compare_quiet floatx80_compare_quiet
#define sin sinl
#define cos cosl
#define sqrt sqrtl
#define pow powl
#define log logl
#define tan tanl
#define atan2 atan2l
#define floor floorl
#define ceil ceill
#define ldexp ldexpl
#else
#define floatx_to_int32 float64_to_int32
#define floatx_to_int64 float64_to_int64
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
#define int32_to_floatx int32_to_float64
#define int64_to_floatx int64_to_float64
#define float32_to_floatx float32_to_float64
#define float64_to_floatx(x, e) (x)
#define floatx_to_float32 float64_to_float32
#define floatx_to_float64(x, e) (x)
#define floatx_abs float64_abs
#define floatx_chs float64_chs
#define floatx_round_to_int float64_round_to_int
#define floatx_compare float64_compare
#define floatx_compare_quiet float64_compare_quiet
#endif
extern CPU86_LDouble sin(CPU86_LDouble x);
extern CPU86_LDouble cos(CPU86_LDouble x);
extern CPU86_LDouble sqrt(CPU86_LDouble x);
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
extern CPU86_LDouble log(CPU86_LDouble x);
extern CPU86_LDouble tan(CPU86_LDouble x);
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
extern CPU86_LDouble floor(CPU86_LDouble x);
extern CPU86_LDouble ceil(CPU86_LDouble x);
#define RC_MASK 0xc00
#define RC_NEAR 0x000
#define RC_DOWN 0x400
#define RC_UP 0x800
#define RC_CHOP 0xc00
#define MAXTAN 9223372036854775808.0
#ifdef USE_X86LDOUBLE
/* only for x86 */
typedef union {
long double d;
struct {
unsigned long long lower;
unsigned short upper;
} l;
} CPU86_LDoubleU;
/* the following deal with x86 long double-precision numbers */
#define MAXEXPD 0x7fff
#define EXPBIAS 16383
#define EXPD(fp) (fp.l.upper & 0x7fff)
#define SIGND(fp) ((fp.l.upper) & 0x8000)
#define MANTD(fp) (fp.l.lower)
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
#else
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
typedef union {
double d;
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
struct {
uint32_t lower;
int32_t upper;
} l;
#else
struct {
int32_t upper;
uint32_t lower;
} l;
#endif
#ifndef __arm__
int64_t ll;
#endif
} CPU86_LDoubleU;
/* the following deal with IEEE double-precision numbers */
#define MAXEXPD 0x7ff
#define EXPBIAS 1023
#define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
#define SIGND(fp) ((fp.l.upper) & 0x80000000)
#ifdef __arm__
#define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
#else
#define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
#endif
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
#endif
static inline void fpush(void)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fptags[env->fpstt] = 0; /* validate stack entry */
}
static inline void fpop(void)
{
env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
env->fpstt = (env->fpstt + 1) & 7;
}
#ifndef USE_X86LDOUBLE
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
{
CPU86_LDoubleU temp;
int upper, e;
uint64_t ll;
/* mantissa */
upper = lduw(ptr + 8);
/* XXX: handle overflow ? */
e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
e |= (upper >> 4) & 0x800; /* sign */
ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
#ifdef __arm__
temp.l.upper = (e << 20) | (ll >> 32);
temp.l.lower = ll;
#else
temp.ll = ll | ((uint64_t)e << 52);
#endif
return temp.d;
}
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
{
CPU86_LDoubleU temp;
int e;
temp.d = f;
/* mantissa */
stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
/* exponent + sign */
e = EXPD(temp) - EXPBIAS + 16383;
e |= SIGND(temp) >> 16;
stw(ptr + 8, e);
}
#else
/* we use memory access macros */
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
{
CPU86_LDoubleU temp;
temp.l.lower = ldq(ptr);
temp.l.upper = lduw(ptr + 8);
return temp.d;
}
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
{
CPU86_LDoubleU temp;
temp.d = f;
stq(ptr, temp.l.lower);
stw(ptr + 8, temp.l.upper);
}
#endif /* USE_X86LDOUBLE */
#define FPUS_IE (1 << 0)
#define FPUS_DE (1 << 1)
#define FPUS_ZE (1 << 2)
#define FPUS_OE (1 << 3)
#define FPUS_UE (1 << 4)
#define FPUS_PE (1 << 5)
#define FPUS_SF (1 << 6)
#define FPUS_SE (1 << 7)
#define FPUS_B (1 << 15)
#define FPUC_EM 0x3f
extern const CPU86_LDouble f15rk[7];
void fpu_raise_exception(void);
void restore_native_fp_state(CPUState *env);
void save_native_fp_state(CPUState *env);
extern const uint8_t parity_table[256];
extern const uint8_t rclw_table[32];
extern const uint8_t rclb_table[32];
static inline uint32_t compute_eflags(void)
{
return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
}
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
static inline void load_eflags(int eflags, int update_mask)
{
CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((eflags >> 10) & 1));
env->eflags = (env->eflags & ~update_mask) |
(eflags & update_mask);
}
static inline void env_to_regs(void)
{
#ifdef reg_EAX
EAX = env->regs[R_EAX];
#endif
#ifdef reg_ECX
ECX = env->regs[R_ECX];
#endif
#ifdef reg_EDX
EDX = env->regs[R_EDX];
#endif
#ifdef reg_EBX
EBX = env->regs[R_EBX];
#endif
#ifdef reg_ESP
ESP = env->regs[R_ESP];
#endif
#ifdef reg_EBP
EBP = env->regs[R_EBP];
#endif
#ifdef reg_ESI
ESI = env->regs[R_ESI];
#endif
#ifdef reg_EDI
EDI = env->regs[R_EDI];
#endif
}
static inline void regs_to_env(void)
{
#ifdef reg_EAX
env->regs[R_EAX] = EAX;
#endif
#ifdef reg_ECX
env->regs[R_ECX] = ECX;
#endif
#ifdef reg_EDX
env->regs[R_EDX] = EDX;
#endif
#ifdef reg_EBX
env->regs[R_EBX] = EBX;
#endif
#ifdef reg_ESP
env->regs[R_ESP] = ESP;
#endif
#ifdef reg_EBP
env->regs[R_EBP] = EBP;
#endif
#ifdef reg_ESI
env->regs[R_ESI] = ESI;
#endif
#ifdef reg_EDI
env->regs[R_EDI] = EDI;
#endif
}
static inline int cpu_halted(CPUState *env) {
/* handle exit of HALTED state */
if (!(env->hflags & HF_HALTED_MASK))
return 0;
/* disable halt condition */
if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) ||
(env->interrupt_request & CPU_INTERRUPT_NMI)) {
env->hflags &= ~HF_HALTED_MASK;
return 0;
}
return EXCP_HALTED;
}
|