1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
/*
* ARM implementation of KVM hooks, 64 bit specific code
*
* Copyright Mian-M. Hamayun 2013, Virtual Open Systems
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "cpu.h"
#include "internals.h"
#include "hw/arm/arm.h"
static inline void set_feature(uint64_t *features, int feature)
{
*features |= 1ULL << feature;
}
bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
{
/* Identify the feature bits corresponding to the host CPU, and
* fill out the ARMHostCPUClass fields accordingly. To do this
* we have to create a scratch VM, create a single CPU inside it,
* and then query that CPU for the relevant ID registers.
* For AArch64 we currently don't care about ID registers at
* all; we just want to know the CPU type.
*/
int fdarray[3];
uint64_t features = 0;
/* Old kernels may not know about the PREFERRED_TARGET ioctl: however
* we know these will only support creating one kind of guest CPU,
* which is its preferred CPU type. Fortunately these old kernels
* support only a very limited number of CPUs.
*/
static const uint32_t cpus_to_try[] = {
KVM_ARM_TARGET_AEM_V8,
KVM_ARM_TARGET_FOUNDATION_V8,
KVM_ARM_TARGET_CORTEX_A57,
QEMU_KVM_ARM_TARGET_NONE
};
struct kvm_vcpu_init init;
if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
return false;
}
ahcc->target = init.target;
ahcc->dtb_compatible = "arm,arm-v8";
kvm_arm_destroy_scratch_host_vcpu(fdarray);
/* We can assume any KVM supporting CPU is at least a v8
* with VFPv4+Neon; this in turn implies most of the other
* feature bits.
*/
set_feature(&features, ARM_FEATURE_V8);
set_feature(&features, ARM_FEATURE_VFP4);
set_feature(&features, ARM_FEATURE_NEON);
set_feature(&features, ARM_FEATURE_AARCH64);
ahcc->features = features;
return true;
}
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret;
ARMCPU *cpu = ARM_CPU(cs);
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
fprintf(stderr, "KVM is not supported for this guest CPU type\n");
return -EINVAL;
}
/* Determine init features for this CPU */
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
if (cpu->start_powered_off) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
}
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
cpu->psci_version = 2;
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
}
/* Do KVM_ARM_VCPU_INIT ioctl */
ret = kvm_arm_vcpu_init(cs);
if (ret) {
return ret;
}
return kvm_arm_init_cpreg_list(cpu);
}
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
{
/* Return true if the regidx is a register we should synchronize
* via the cpreg_tuples array (ie is not a core reg we sync by
* hand in kvm_arch_get/put_registers())
*/
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
case KVM_REG_ARM_CORE:
return false;
default:
return true;
}
}
#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
int kvm_arch_put_registers(CPUState *cs, int level)
{
struct kvm_one_reg reg;
uint64_t val;
int i;
int ret;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
for (i = 0; i < 31; i++) {
reg.id = AARCH64_CORE_REG(regs.regs[i]);
reg.addr = (uintptr_t) &env->xregs[i];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
if (ret) {
return ret;
}
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_save_sp(env, 1);
reg.id = AARCH64_CORE_REG(regs.sp);
reg.addr = (uintptr_t) &env->sp_el[0];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(sp_el1);
reg.addr = (uintptr_t) &env->sp_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
if (ret) {
return ret;
}
/* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
val = pstate_read(env);
reg.id = AARCH64_CORE_REG(regs.pstate);
reg.addr = (uintptr_t) &val;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(regs.pc);
reg.addr = (uintptr_t) &env->pc;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(elr_el1);
reg.addr = (uintptr_t) &env->elr_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
if (ret) {
return ret;
}
for (i = 0; i < KVM_NR_SPSR; i++) {
reg.id = AARCH64_CORE_REG(spsr[i]);
reg.addr = (uintptr_t) &env->banked_spsr[i - 1];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
if (ret) {
return ret;
}
}
if (!write_list_to_kvmstate(cpu)) {
return EINVAL;
}
/* TODO:
* FP state
*/
return ret;
}
int kvm_arch_get_registers(CPUState *cs)
{
struct kvm_one_reg reg;
uint64_t val;
int i;
int ret;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
for (i = 0; i < 31; i++) {
reg.id = AARCH64_CORE_REG(regs.regs[i]);
reg.addr = (uintptr_t) &env->xregs[i];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
if (ret) {
return ret;
}
}
reg.id = AARCH64_CORE_REG(regs.sp);
reg.addr = (uintptr_t) &env->sp_el[0];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(sp_el1);
reg.addr = (uintptr_t) &env->sp_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(regs.pstate);
reg.addr = (uintptr_t) &val;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
if (ret) {
return ret;
}
pstate_write(env, val);
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_restore_sp(env, 1);
reg.id = AARCH64_CORE_REG(regs.pc);
reg.addr = (uintptr_t) &env->pc;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(elr_el1);
reg.addr = (uintptr_t) &env->elr_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
if (ret) {
return ret;
}
for (i = 0; i < KVM_NR_SPSR; i++) {
reg.id = AARCH64_CORE_REG(spsr[i]);
reg.addr = (uintptr_t) &env->banked_spsr[i - 1];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
if (ret) {
return ret;
}
}
if (!write_kvmstate_to_list(cpu)) {
return EINVAL;
}
/* Note that it's OK to have registers which aren't in CPUState,
* so we can ignore a failure return here.
*/
write_list_to_cpustate(cpu);
/* TODO: other registers */
return ret;
}
|