1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
/*
* ARM implementation of KVM hooks
*
* Copyright Christoffer Dall 2009-2010
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "cpu.h"
#include "hw/arm/arm.h"
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
int kvm_arch_init(KVMState *s)
{
/* For ARM interrupt delivery is always asynchronous,
* whether we are using an in-kernel VGIC or not.
*/
kvm_async_interrupts_allowed = true;
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
int kvm_arch_init_vcpu(CPUState *cs)
{
struct kvm_vcpu_init init;
int ret;
uint64_t v;
struct kvm_one_reg r;
init.target = KVM_ARM_TARGET_CORTEX_A15;
memset(init.features, 0, sizeof(init.features));
ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
if (ret) {
return ret;
}
/* Query the kernel to make sure it supports 32 VFP
* registers: QEMU's "cortex-a15" CPU is always a
* VFP-D32 core. The simplest way to do this is just
* to attempt to read register d31.
*/
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
r.addr = (uintptr_t)(&v);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
if (ret == -ENOENT) {
return -EINVAL;
}
return ret;
}
/* We track all the KVM devices which need their memory addresses
* passing to the kernel in a list of these structures.
* When board init is complete we run through the list and
* tell the kernel the base addresses of the memory regions.
* We use a MemoryListener to track mapping and unmapping of
* the regions during board creation, so the board models don't
* need to do anything special for the KVM case.
*/
typedef struct KVMDevice {
struct kvm_arm_device_addr kda;
MemoryRegion *mr;
QSLIST_ENTRY(KVMDevice) entries;
} KVMDevice;
static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
static void kvm_arm_devlistener_add(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMDevice *kd;
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
if (section->mr == kd->mr) {
kd->kda.addr = section->offset_within_address_space;
}
}
}
static void kvm_arm_devlistener_del(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMDevice *kd;
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
if (section->mr == kd->mr) {
kd->kda.addr = -1;
}
}
}
static MemoryListener devlistener = {
.region_add = kvm_arm_devlistener_add,
.region_del = kvm_arm_devlistener_del,
};
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
{
KVMDevice *kd, *tkd;
memory_listener_unregister(&devlistener);
QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
if (kd->kda.addr != -1) {
if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR,
&kd->kda) < 0) {
fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
strerror(errno));
abort();
}
}
g_free(kd);
}
}
static Notifier notify = {
.notify = kvm_arm_machine_init_done,
};
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid)
{
KVMDevice *kd;
if (!kvm_irqchip_in_kernel()) {
return;
}
if (QSLIST_EMPTY(&kvm_devices_head)) {
memory_listener_register(&devlistener, NULL);
qemu_add_machine_init_done_notifier(¬ify);
}
kd = g_new0(KVMDevice, 1);
kd->mr = mr;
kd->kda.id = devid;
kd->kda.addr = -1;
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
}
typedef struct Reg {
uint64_t id;
int offset;
} Reg;
#define COREREG(KERNELNAME, QEMUFIELD) \
{ \
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
offsetof(CPUARMState, QEMUFIELD) \
}
#define CP15REG(CRN, CRM, OPC1, OPC2, QEMUFIELD) \
{ \
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
(15 << KVM_REG_ARM_COPROC_SHIFT) | \
((CRN) << KVM_REG_ARM_32_CRN_SHIFT) | \
((CRM) << KVM_REG_ARM_CRM_SHIFT) | \
((OPC1) << KVM_REG_ARM_OPC1_SHIFT) | \
((OPC2) << KVM_REG_ARM_32_OPC2_SHIFT), \
offsetof(CPUARMState, QEMUFIELD) \
}
#define VFPSYSREG(R) \
{ \
KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
KVM_REG_ARM_VFP_##R, \
offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
}
static const Reg regs[] = {
/* R0_usr .. R14_usr */
COREREG(usr_regs.uregs[0], regs[0]),
COREREG(usr_regs.uregs[1], regs[1]),
COREREG(usr_regs.uregs[2], regs[2]),
COREREG(usr_regs.uregs[3], regs[3]),
COREREG(usr_regs.uregs[4], regs[4]),
COREREG(usr_regs.uregs[5], regs[5]),
COREREG(usr_regs.uregs[6], regs[6]),
COREREG(usr_regs.uregs[7], regs[7]),
COREREG(usr_regs.uregs[8], usr_regs[0]),
COREREG(usr_regs.uregs[9], usr_regs[1]),
COREREG(usr_regs.uregs[10], usr_regs[2]),
COREREG(usr_regs.uregs[11], usr_regs[3]),
COREREG(usr_regs.uregs[12], usr_regs[4]),
COREREG(usr_regs.uregs[13], banked_r13[0]),
COREREG(usr_regs.uregs[14], banked_r14[0]),
/* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
COREREG(svc_regs[0], banked_r13[1]),
COREREG(svc_regs[1], banked_r14[1]),
COREREG(svc_regs[2], banked_spsr[1]),
COREREG(abt_regs[0], banked_r13[2]),
COREREG(abt_regs[1], banked_r14[2]),
COREREG(abt_regs[2], banked_spsr[2]),
COREREG(und_regs[0], banked_r13[3]),
COREREG(und_regs[1], banked_r14[3]),
COREREG(und_regs[2], banked_spsr[3]),
COREREG(irq_regs[0], banked_r13[4]),
COREREG(irq_regs[1], banked_r14[4]),
COREREG(irq_regs[2], banked_spsr[4]),
/* R8_fiq .. R14_fiq and SPSR_fiq */
COREREG(fiq_regs[0], fiq_regs[0]),
COREREG(fiq_regs[1], fiq_regs[1]),
COREREG(fiq_regs[2], fiq_regs[2]),
COREREG(fiq_regs[3], fiq_regs[3]),
COREREG(fiq_regs[4], fiq_regs[4]),
COREREG(fiq_regs[5], banked_r13[5]),
COREREG(fiq_regs[6], banked_r14[5]),
COREREG(fiq_regs[7], banked_spsr[5]),
/* R15 */
COREREG(usr_regs.uregs[15], regs[15]),
/* A non-comprehensive set of cp15 registers.
* TODO: drive this from the cp_regs hashtable instead.
*/
CP15REG(1, 0, 0, 0, cp15.c1_sys), /* SCTLR */
CP15REG(2, 0, 0, 2, cp15.c2_control), /* TTBCR */
CP15REG(3, 0, 0, 0, cp15.c3), /* DACR */
/* VFP system registers */
VFPSYSREG(FPSID),
VFPSYSREG(MVFR1),
VFPSYSREG(MVFR0),
VFPSYSREG(FPEXC),
VFPSYSREG(FPINST),
VFPSYSREG(FPINST2),
};
int kvm_arch_put_registers(CPUState *cs, int level)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
struct kvm_one_reg r;
int mode, bn;
int ret, i;
uint32_t cpsr, fpscr;
uint64_t ttbr;
/* Make sure the banked regs are properly set */
mode = env->uncached_cpsr & CPSR_M;
bn = bank_number(mode);
if (mode == ARM_CPU_MODE_FIQ) {
memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
} else {
memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
}
env->banked_r13[bn] = env->regs[13];
env->banked_r14[bn] = env->regs[14];
env->banked_spsr[bn] = env->spsr;
/* Now we can safely copy stuff down to the kernel */
for (i = 0; i < ARRAY_SIZE(regs); i++) {
r.id = regs[i].id;
r.addr = (uintptr_t)(env) + regs[i].offset;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
return ret;
}
}
/* Special cases which aren't a single CPUARMState field */
cpsr = cpsr_read(env);
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
r.addr = (uintptr_t)(&cpsr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
return ret;
}
/* TTBR0: cp15 crm=2 opc1=0 */
ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
(2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
r.addr = (uintptr_t)(&ttbr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
return ret;
}
/* TTBR1: cp15 crm=2 opc1=1 */
ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
(2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
r.addr = (uintptr_t)(&ttbr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
return ret;
}
/* VFP registers */
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
for (i = 0; i < 32; i++) {
r.addr = (uintptr_t)(&env->vfp.regs[i]);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
return ret;
}
r.id++;
}
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
KVM_REG_ARM_VFP_FPSCR;
fpscr = vfp_get_fpscr(env);
r.addr = (uintptr_t)&fpscr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
return ret;
}
int kvm_arch_get_registers(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
struct kvm_one_reg r;
int mode, bn;
int ret, i;
uint32_t cpsr, fpscr;
uint64_t ttbr;
for (i = 0; i < ARRAY_SIZE(regs); i++) {
r.id = regs[i].id;
r.addr = (uintptr_t)(env) + regs[i].offset;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
if (ret) {
return ret;
}
}
/* Special cases which aren't a single CPUARMState field */
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
r.addr = (uintptr_t)(&cpsr);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
if (ret) {
return ret;
}
cpsr_write(env, cpsr, 0xffffffff);
/* TTBR0: cp15 crm=2 opc1=0 */
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
(2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
r.addr = (uintptr_t)(&ttbr);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
if (ret) {
return ret;
}
env->cp15.c2_base0_hi = ttbr >> 32;
env->cp15.c2_base0 = ttbr;
/* TTBR1: cp15 crm=2 opc1=1 */
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
(2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
r.addr = (uintptr_t)(&ttbr);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
if (ret) {
return ret;
}
env->cp15.c2_base1_hi = ttbr >> 32;
env->cp15.c2_base1 = ttbr;
/* Make sure the current mode regs are properly set */
mode = env->uncached_cpsr & CPSR_M;
bn = bank_number(mode);
if (mode == ARM_CPU_MODE_FIQ) {
memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
} else {
memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
}
env->regs[13] = env->banked_r13[bn];
env->regs[14] = env->banked_r14[bn];
env->spsr = env->banked_spsr[bn];
/* The main GET_ONE_REG loop above set c2_control, but we need to
* update some extra cached precomputed values too.
* When this is driven from the cp_regs hashtable then this ugliness
* can disappear because we'll use the access function which sets
* these values automatically.
*/
env->cp15.c2_mask = ~(0xffffffffu >> env->cp15.c2_control);
env->cp15.c2_base_mask = ~(0x3fffu >> env->cp15.c2_control);
/* VFP registers */
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
for (i = 0; i < 32; i++) {
r.addr = (uintptr_t)(&env->vfp.regs[i]);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
if (ret) {
return ret;
}
r.id++;
}
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
KVM_REG_ARM_VFP_FPSCR;
r.addr = (uintptr_t)&fpscr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
if (ret) {
return ret;
}
vfp_set_fpscr(env, fpscr);
return 0;
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
}
void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
return 0;
}
void kvm_arch_reset_vcpu(CPUState *cs)
{
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
return true;
}
int kvm_arch_process_async_events(CPUState *cs)
{
return 0;
}
int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
{
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
return 1;
}
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs,
struct kvm_sw_breakpoint *bp)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
return -EINVAL;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
return -EINVAL;
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
return -EINVAL;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs,
struct kvm_sw_breakpoint *bp)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
return -EINVAL;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}
|