aboutsummaryrefslogtreecommitdiff
path: root/softmmu_template.h
blob: b9532a4b2428a2fb5a4eeb7a45480e5980a312fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/*
 *  Software MMU support
 *
 * Generate helpers used by TCG for qemu_ld/st ops and code load
 * functions.
 *
 * Included from target op helpers and exec.c.
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#if DATA_SIZE == 8
#define SUFFIX q
#define LSUFFIX q
#define SDATA_TYPE  int64_t
#define DATA_TYPE  uint64_t
#elif DATA_SIZE == 4
#define SUFFIX l
#define LSUFFIX l
#define SDATA_TYPE  int32_t
#define DATA_TYPE  uint32_t
#elif DATA_SIZE == 2
#define SUFFIX w
#define LSUFFIX uw
#define SDATA_TYPE  int16_t
#define DATA_TYPE  uint16_t
#elif DATA_SIZE == 1
#define SUFFIX b
#define LSUFFIX ub
#define SDATA_TYPE  int8_t
#define DATA_TYPE  uint8_t
#else
#error unsupported data size
#endif


/* For the benefit of TCG generated code, we want to avoid the complication
   of ABI-specific return type promotion and always return a value extended
   to the register size of the host.  This is tcg_target_long, except in the
   case of a 32-bit host and 64-bit data, and for that we always have
   uint64_t.  Don't bother with this widened value for SOFTMMU_CODE_ACCESS.  */
#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
# define WORD_TYPE  DATA_TYPE
# define USUFFIX    SUFFIX
#else
# define WORD_TYPE  tcg_target_ulong
# define USUFFIX    glue(u, SUFFIX)
# define SSUFFIX    glue(s, SUFFIX)
#endif

#ifdef SOFTMMU_CODE_ACCESS
#define READ_ACCESS_TYPE MMU_INST_FETCH
#define ADDR_READ addr_code
#else
#define READ_ACCESS_TYPE MMU_DATA_LOAD
#define ADDR_READ addr_read
#endif

#if DATA_SIZE == 8
# define BSWAP(X)  bswap64(X)
#elif DATA_SIZE == 4
# define BSWAP(X)  bswap32(X)
#elif DATA_SIZE == 2
# define BSWAP(X)  bswap16(X)
#else
# define BSWAP(X)  (X)
#endif

#ifdef TARGET_WORDS_BIGENDIAN
# define TGT_BE(X)  (X)
# define TGT_LE(X)  BSWAP(X)
#else
# define TGT_BE(X)  BSWAP(X)
# define TGT_LE(X)  (X)
#endif

#if DATA_SIZE == 1
# define helper_le_ld_name  glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
# define helper_be_ld_name  helper_le_ld_name
# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
# define helper_be_lds_name helper_le_lds_name
# define helper_le_st_name  glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
# define helper_be_st_name  helper_le_st_name
#else
# define helper_le_ld_name  glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
# define helper_be_ld_name  glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
# define helper_le_st_name  glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
# define helper_be_st_name  glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
#endif

#ifdef TARGET_WORDS_BIGENDIAN
# define helper_te_ld_name  helper_be_ld_name
# define helper_te_st_name  helper_be_st_name
#else
# define helper_te_ld_name  helper_le_ld_name
# define helper_te_st_name  helper_le_st_name
#endif

#ifndef SOFTMMU_CODE_ACCESS
static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
                                              CPUIOTLBEntry *iotlbentry,
                                              target_ulong addr,
                                              uintptr_t retaddr)
{
    uint64_t val;
    CPUState *cpu = ENV_GET_CPU(env);
    hwaddr physaddr = iotlbentry->addr;
    MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);

    physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
    cpu->mem_io_pc = retaddr;
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
        cpu_io_recompile(cpu, retaddr);
    }

    cpu->mem_io_vaddr = addr;
    memory_region_dispatch_read(mr, physaddr, &val, DATA_SIZE,
                                iotlbentry->attrs);
    return val;
}
#endif

WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
                            TCGMemOpIdx oi, uintptr_t retaddr)
{
    unsigned mmu_idx = get_mmuidx(oi);
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
    unsigned a_bits = get_alignment_bits(get_memop(oi));
    uintptr_t haddr;
    DATA_TYPE res;

    if (addr & ((1 << a_bits) - 1)) {
        cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                             mmu_idx, retaddr);
    }

    /* If the TLB entry is for a different page, reload and try again.  */
    if ((addr & TARGET_PAGE_MASK)
         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
            tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                     mmu_idx, retaddr);
        }
        tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
    }

    /* Handle an IO access.  */
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
        CPUIOTLBEntry *iotlbentry;
        if ((addr & (DATA_SIZE - 1)) != 0) {
            goto do_unaligned_access;
        }
        iotlbentry = &env->iotlb[mmu_idx][index];

        /* ??? Note that the io helpers always read data in the target
           byte ordering.  We should push the LE/BE request down into io.  */
        res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
        res = TGT_LE(res);
        return res;
    }

    /* Handle slow unaligned access (it spans two pages or IO).  */
    if (DATA_SIZE > 1
        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
                    >= TARGET_PAGE_SIZE)) {
        target_ulong addr1, addr2;
        DATA_TYPE res1, res2;
        unsigned shift;
    do_unaligned_access:
        addr1 = addr & ~(DATA_SIZE - 1);
        addr2 = addr1 + DATA_SIZE;
        res1 = helper_le_ld_name(env, addr1, oi, retaddr);
        res2 = helper_le_ld_name(env, addr2, oi, retaddr);
        shift = (addr & (DATA_SIZE - 1)) * 8;

        /* Little-endian combine.  */
        res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
        return res;
    }

    haddr = addr + env->tlb_table[mmu_idx][index].addend;
#if DATA_SIZE == 1
    res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
#else
    res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
#endif
    return res;
}

#if DATA_SIZE > 1
WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
                            TCGMemOpIdx oi, uintptr_t retaddr)
{
    unsigned mmu_idx = get_mmuidx(oi);
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
    unsigned a_bits = get_alignment_bits(get_memop(oi));
    uintptr_t haddr;
    DATA_TYPE res;

    if (addr & ((1 << a_bits) - 1)) {
        cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                             mmu_idx, retaddr);
    }

    /* If the TLB entry is for a different page, reload and try again.  */
    if ((addr & TARGET_PAGE_MASK)
         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
            tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                     mmu_idx, retaddr);
        }
        tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
    }

    /* Handle an IO access.  */
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
        CPUIOTLBEntry *iotlbentry;
        if ((addr & (DATA_SIZE - 1)) != 0) {
            goto do_unaligned_access;
        }
        iotlbentry = &env->iotlb[mmu_idx][index];

        /* ??? Note that the io helpers always read data in the target
           byte ordering.  We should push the LE/BE request down into io.  */
        res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
        res = TGT_BE(res);
        return res;
    }

    /* Handle slow unaligned access (it spans two pages or IO).  */
    if (DATA_SIZE > 1
        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
                    >= TARGET_PAGE_SIZE)) {
        target_ulong addr1, addr2;
        DATA_TYPE res1, res2;
        unsigned shift;
    do_unaligned_access:
        addr1 = addr & ~(DATA_SIZE - 1);
        addr2 = addr1 + DATA_SIZE;
        res1 = helper_be_ld_name(env, addr1, oi, retaddr);
        res2 = helper_be_ld_name(env, addr2, oi, retaddr);
        shift = (addr & (DATA_SIZE - 1)) * 8;

        /* Big-endian combine.  */
        res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
        return res;
    }

    haddr = addr + env->tlb_table[mmu_idx][index].addend;
    res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
    return res;
}
#endif /* DATA_SIZE > 1 */

#ifndef SOFTMMU_CODE_ACCESS

/* Provide signed versions of the load routines as well.  We can of course
   avoid this for 64-bit data, or for 32-bit data on 32-bit host.  */
#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
                             TCGMemOpIdx oi, uintptr_t retaddr)
{
    return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
}

# if DATA_SIZE > 1
WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
                             TCGMemOpIdx oi, uintptr_t retaddr)
{
    return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
}
# endif
#endif

static inline void glue(io_write, SUFFIX)(CPUArchState *env,
                                          CPUIOTLBEntry *iotlbentry,
                                          DATA_TYPE val,
                                          target_ulong addr,
                                          uintptr_t retaddr)
{
    CPUState *cpu = ENV_GET_CPU(env);
    hwaddr physaddr = iotlbentry->addr;
    MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);

    physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
        cpu_io_recompile(cpu, retaddr);
    }

    cpu->mem_io_vaddr = addr;
    cpu->mem_io_pc = retaddr;
    memory_region_dispatch_write(mr, physaddr, val, DATA_SIZE,
                                 iotlbentry->attrs);
}

void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
                       TCGMemOpIdx oi, uintptr_t retaddr)
{
    unsigned mmu_idx = get_mmuidx(oi);
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
    unsigned a_bits = get_alignment_bits(get_memop(oi));
    uintptr_t haddr;

    if (addr & ((1 << a_bits) - 1)) {
        cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
                             mmu_idx, retaddr);
    }

    /* If the TLB entry is for a different page, reload and try again.  */
    if ((addr & TARGET_PAGE_MASK)
        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        if (!VICTIM_TLB_HIT(addr_write, addr)) {
            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
        }
        tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
    }

    /* Handle an IO access.  */
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
        CPUIOTLBEntry *iotlbentry;
        if ((addr & (DATA_SIZE - 1)) != 0) {
            goto do_unaligned_access;
        }
        iotlbentry = &env->iotlb[mmu_idx][index];

        /* ??? Note that the io helpers always read data in the target
           byte ordering.  We should push the LE/BE request down into io.  */
        val = TGT_LE(val);
        glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
        return;
    }

    /* Handle slow unaligned access (it spans two pages or IO).  */
    if (DATA_SIZE > 1
        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
                     >= TARGET_PAGE_SIZE)) {
        int i, index2;
        target_ulong page2, tlb_addr2;
    do_unaligned_access:
        /* Ensure the second page is in the TLB.  Note that the first page
           is already guaranteed to be filled, and that the second page
           cannot evict the first.  */
        page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
        index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
        tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
        if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
            && !VICTIM_TLB_HIT(addr_write, page2)) {
            tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
                     mmu_idx, retaddr);
        }

        /* XXX: not efficient, but simple.  */
        /* This loop must go in the forward direction to avoid issues
           with self-modifying code in Windows 64-bit.  */
        for (i = 0; i < DATA_SIZE; ++i) {
            /* Little-endian extract.  */
            uint8_t val8 = val >> (i * 8);
            glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
                                            oi, retaddr);
        }
        return;
    }

    haddr = addr + env->tlb_table[mmu_idx][index].addend;
#if DATA_SIZE == 1
    glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
#else
    glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
#endif
}

#if DATA_SIZE > 1
void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
                       TCGMemOpIdx oi, uintptr_t retaddr)
{
    unsigned mmu_idx = get_mmuidx(oi);
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
    unsigned a_bits = get_alignment_bits(get_memop(oi));
    uintptr_t haddr;

    if (addr & ((1 << a_bits) - 1)) {
        cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
                             mmu_idx, retaddr);
    }

    /* If the TLB entry is for a different page, reload and try again.  */
    if ((addr & TARGET_PAGE_MASK)
        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        if (!VICTIM_TLB_HIT(addr_write, addr)) {
            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
        }
        tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
    }

    /* Handle an IO access.  */
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
        CPUIOTLBEntry *iotlbentry;
        if ((addr & (DATA_SIZE - 1)) != 0) {
            goto do_unaligned_access;
        }
        iotlbentry = &env->iotlb[mmu_idx][index];

        /* ??? Note that the io helpers always read data in the target
           byte ordering.  We should push the LE/BE request down into io.  */
        val = TGT_BE(val);
        glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
        return;
    }

    /* Handle slow unaligned access (it spans two pages or IO).  */
    if (DATA_SIZE > 1
        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
                     >= TARGET_PAGE_SIZE)) {
        int i, index2;
        target_ulong page2, tlb_addr2;
    do_unaligned_access:
        /* Ensure the second page is in the TLB.  Note that the first page
           is already guaranteed to be filled, and that the second page
           cannot evict the first.  */
        page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
        index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
        tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
        if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
            && !VICTIM_TLB_HIT(addr_write, page2)) {
            tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
                     mmu_idx, retaddr);
        }

        /* XXX: not efficient, but simple */
        /* This loop must go in the forward direction to avoid issues
           with self-modifying code.  */
        for (i = 0; i < DATA_SIZE; ++i) {
            /* Big-endian extract.  */
            uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
            glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
                                            oi, retaddr);
        }
        return;
    }

    haddr = addr + env->tlb_table[mmu_idx][index].addend;
    glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
}
#endif /* DATA_SIZE > 1 */
#endif /* !defined(SOFTMMU_CODE_ACCESS) */

#undef READ_ACCESS_TYPE
#undef DATA_TYPE
#undef SUFFIX
#undef LSUFFIX
#undef DATA_SIZE
#undef ADDR_READ
#undef WORD_TYPE
#undef SDATA_TYPE
#undef USUFFIX
#undef SSUFFIX
#undef BSWAP
#undef TGT_BE
#undef TGT_LE
#undef CPU_BE
#undef CPU_LE
#undef helper_le_ld_name
#undef helper_be_ld_name
#undef helper_le_lds_name
#undef helper_be_lds_name
#undef helper_le_st_name
#undef helper_be_st_name
#undef helper_te_ld_name
#undef helper_te_st_name