aboutsummaryrefslogtreecommitdiff
path: root/softmmu/cpus.c
blob: 9fa73735a2a84da4347dc48c19b24a760ecd4c5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/*
 * QEMU System Emulator
 *
 * Copyright (c) 2003-2008 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "qemu/osdep.h"
#include "qemu-common.h"
#include "monitor/monitor.h"
#include "qapi/error.h"
#include "qapi/qapi-commands-misc.h"
#include "qapi/qapi-events-run-state.h"
#include "qapi/qmp/qerror.h"
#include "sysemu/tcg.h"
#include "exec/gdbstub.h"
#include "sysemu/hw_accel.h"
#include "sysemu/kvm.h"
#include "sysemu/hax.h"
#include "sysemu/hvf.h"
#include "sysemu/whpx.h"
#include "exec/exec-all.h"
#include "qemu/thread.h"
#include "qemu/plugin.h"
#include "sysemu/cpus.h"
#include "qemu/main-loop.h"
#include "qemu/option.h"
#include "qemu/bitmap.h"
#include "qemu/seqlock.h"
#include "qemu/guest-random.h"
#include "tcg/tcg.h"
#include "hw/nmi.h"
#include "sysemu/replay.h"
#include "sysemu/runstate.h"
#include "sysemu/cpu-timers.h"
#include "hw/boards.h"
#include "hw/hw.h"

#ifdef CONFIG_LINUX

#include <sys/prctl.h>

#ifndef PR_MCE_KILL
#define PR_MCE_KILL 33
#endif

#ifndef PR_MCE_KILL_SET
#define PR_MCE_KILL_SET 1
#endif

#ifndef PR_MCE_KILL_EARLY
#define PR_MCE_KILL_EARLY 1
#endif

#endif /* CONFIG_LINUX */

static QemuMutex qemu_global_mutex;

bool cpu_is_stopped(CPUState *cpu)
{
    return cpu->stopped || !runstate_is_running();
}

bool cpu_work_list_empty(CPUState *cpu)
{
    bool ret;

    qemu_mutex_lock(&cpu->work_mutex);
    ret = QSIMPLEQ_EMPTY(&cpu->work_list);
    qemu_mutex_unlock(&cpu->work_mutex);
    return ret;
}

bool cpu_thread_is_idle(CPUState *cpu)
{
    if (cpu->stop || !cpu_work_list_empty(cpu)) {
        return false;
    }
    if (cpu_is_stopped(cpu)) {
        return true;
    }
    if (!cpu->halted || cpu_has_work(cpu) ||
        kvm_halt_in_kernel()) {
        return false;
    }
    return true;
}

bool all_cpu_threads_idle(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        if (!cpu_thread_is_idle(cpu)) {
            return false;
        }
    }
    return true;
}

/***********************************************************/
void hw_error(const char *fmt, ...)
{
    va_list ap;
    CPUState *cpu;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
    CPU_FOREACH(cpu) {
        fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
        cpu_dump_state(cpu, stderr, CPU_DUMP_FPU);
    }
    va_end(ap);
    abort();
}

/*
 * The chosen accelerator is supposed to register this.
 */
static const CpusAccel *cpus_accel;

void cpu_synchronize_all_states(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        cpu_synchronize_state(cpu);
    }
}

void cpu_synchronize_all_post_reset(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        cpu_synchronize_post_reset(cpu);
    }
}

void cpu_synchronize_all_post_init(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        cpu_synchronize_post_init(cpu);
    }
}

void cpu_synchronize_all_pre_loadvm(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        cpu_synchronize_pre_loadvm(cpu);
    }
}

void cpu_synchronize_state(CPUState *cpu)
{
    if (cpus_accel && cpus_accel->synchronize_state) {
        cpus_accel->synchronize_state(cpu);
    }
    if (hax_enabled()) {
        hax_cpu_synchronize_state(cpu);
    }
    if (whpx_enabled()) {
        whpx_cpu_synchronize_state(cpu);
    }
}

void cpu_synchronize_post_reset(CPUState *cpu)
{
    if (cpus_accel && cpus_accel->synchronize_post_reset) {
        cpus_accel->synchronize_post_reset(cpu);
    }
    if (hax_enabled()) {
        hax_cpu_synchronize_post_reset(cpu);
    }
    if (whpx_enabled()) {
        whpx_cpu_synchronize_post_reset(cpu);
    }
}

void cpu_synchronize_post_init(CPUState *cpu)
{
    if (cpus_accel && cpus_accel->synchronize_post_init) {
        cpus_accel->synchronize_post_init(cpu);
    }
    if (hax_enabled()) {
        hax_cpu_synchronize_post_init(cpu);
    }
    if (whpx_enabled()) {
        whpx_cpu_synchronize_post_init(cpu);
    }
}

void cpu_synchronize_pre_loadvm(CPUState *cpu)
{
    if (cpus_accel && cpus_accel->synchronize_pre_loadvm) {
        cpus_accel->synchronize_pre_loadvm(cpu);
    }
    if (hax_enabled()) {
        hax_cpu_synchronize_pre_loadvm(cpu);
    }
    if (hvf_enabled()) {
        hvf_cpu_synchronize_pre_loadvm(cpu);
    }
    if (whpx_enabled()) {
        whpx_cpu_synchronize_pre_loadvm(cpu);
    }
}

int64_t cpus_get_virtual_clock(void)
{
    if (cpus_accel && cpus_accel->get_virtual_clock) {
        return cpus_accel->get_virtual_clock();
    }
    return cpu_get_clock();
}

/*
 * return the time elapsed in VM between vm_start and vm_stop.  Unless
 * icount is active, cpus_get_elapsed_ticks() uses units of the host CPU cycle
 * counter.
 */
int64_t cpus_get_elapsed_ticks(void)
{
    if (cpus_accel && cpus_accel->get_elapsed_ticks) {
        return cpus_accel->get_elapsed_ticks();
    }
    return cpu_get_ticks();
}

static int do_vm_stop(RunState state, bool send_stop)
{
    int ret = 0;

    if (runstate_is_running()) {
        runstate_set(state);
        cpu_disable_ticks();
        pause_all_vcpus();
        vm_state_notify(0, state);
        if (send_stop) {
            qapi_event_send_stop();
        }
    }

    bdrv_drain_all();
    ret = bdrv_flush_all();

    return ret;
}

/* Special vm_stop() variant for terminating the process.  Historically clients
 * did not expect a QMP STOP event and so we need to retain compatibility.
 */
int vm_shutdown(void)
{
    return do_vm_stop(RUN_STATE_SHUTDOWN, false);
}

bool cpu_can_run(CPUState *cpu)
{
    if (cpu->stop) {
        return false;
    }
    if (cpu_is_stopped(cpu)) {
        return false;
    }
    return true;
}

void cpu_handle_guest_debug(CPUState *cpu)
{
    gdb_set_stop_cpu(cpu);
    qemu_system_debug_request();
    cpu->stopped = true;
}

#ifdef CONFIG_LINUX
static void sigbus_reraise(void)
{
    sigset_t set;
    struct sigaction action;

    memset(&action, 0, sizeof(action));
    action.sa_handler = SIG_DFL;
    if (!sigaction(SIGBUS, &action, NULL)) {
        raise(SIGBUS);
        sigemptyset(&set);
        sigaddset(&set, SIGBUS);
        pthread_sigmask(SIG_UNBLOCK, &set, NULL);
    }
    perror("Failed to re-raise SIGBUS!\n");
    abort();
}

static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
{
    if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
        sigbus_reraise();
    }

    if (current_cpu) {
        /* Called asynchronously in VCPU thread.  */
        if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
            sigbus_reraise();
        }
    } else {
        /* Called synchronously (via signalfd) in main thread.  */
        if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
            sigbus_reraise();
        }
    }
}

static void qemu_init_sigbus(void)
{
    struct sigaction action;

    memset(&action, 0, sizeof(action));
    action.sa_flags = SA_SIGINFO;
    action.sa_sigaction = sigbus_handler;
    sigaction(SIGBUS, &action, NULL);

    prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
}
#else /* !CONFIG_LINUX */
static void qemu_init_sigbus(void)
{
}
#endif /* !CONFIG_LINUX */

static QemuThread io_thread;

/* cpu creation */
static QemuCond qemu_cpu_cond;
/* system init */
static QemuCond qemu_pause_cond;

void qemu_init_cpu_loop(void)
{
    qemu_init_sigbus();
    qemu_cond_init(&qemu_cpu_cond);
    qemu_cond_init(&qemu_pause_cond);
    qemu_mutex_init(&qemu_global_mutex);

    qemu_thread_get_self(&io_thread);
}

void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
{
    do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
}

static void qemu_cpu_stop(CPUState *cpu, bool exit)
{
    g_assert(qemu_cpu_is_self(cpu));
    cpu->stop = false;
    cpu->stopped = true;
    if (exit) {
        cpu_exit(cpu);
    }
    qemu_cond_broadcast(&qemu_pause_cond);
}

void qemu_wait_io_event_common(CPUState *cpu)
{
    qatomic_mb_set(&cpu->thread_kicked, false);
    if (cpu->stop) {
        qemu_cpu_stop(cpu, false);
    }
    process_queued_cpu_work(cpu);
}

void qemu_wait_io_event(CPUState *cpu)
{
    bool slept = false;

    while (cpu_thread_is_idle(cpu)) {
        if (!slept) {
            slept = true;
            qemu_plugin_vcpu_idle_cb(cpu);
        }
        qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
    }
    if (slept) {
        qemu_plugin_vcpu_resume_cb(cpu);
    }

#ifdef _WIN32
    /* Eat dummy APC queued by cpus_kick_thread. */
    if (hax_enabled()) {
        SleepEx(0, TRUE);
    }
#endif
    qemu_wait_io_event_common(cpu);
}

static void *qemu_hax_cpu_thread_fn(void *arg)
{
    CPUState *cpu = arg;
    int r;

    rcu_register_thread();
    qemu_mutex_lock_iothread();
    qemu_thread_get_self(cpu->thread);

    cpu->thread_id = qemu_get_thread_id();
    current_cpu = cpu;
    hax_init_vcpu(cpu);
    cpu_thread_signal_created(cpu);
    qemu_guest_random_seed_thread_part2(cpu->random_seed);

    do {
        if (cpu_can_run(cpu)) {
            r = hax_smp_cpu_exec(cpu);
            if (r == EXCP_DEBUG) {
                cpu_handle_guest_debug(cpu);
            }
        }

        qemu_wait_io_event(cpu);
    } while (!cpu->unplug || cpu_can_run(cpu));
    rcu_unregister_thread();
    return NULL;
}

/* The HVF-specific vCPU thread function. This one should only run when the host
 * CPU supports the VMX "unrestricted guest" feature. */
static void *qemu_hvf_cpu_thread_fn(void *arg)
{
    CPUState *cpu = arg;

    int r;

    assert(hvf_enabled());

    rcu_register_thread();

    qemu_mutex_lock_iothread();
    qemu_thread_get_self(cpu->thread);

    cpu->thread_id = qemu_get_thread_id();
    cpu->can_do_io = 1;
    current_cpu = cpu;

    hvf_init_vcpu(cpu);

    /* signal CPU creation */
    cpu_thread_signal_created(cpu);
    qemu_guest_random_seed_thread_part2(cpu->random_seed);

    do {
        if (cpu_can_run(cpu)) {
            r = hvf_vcpu_exec(cpu);
            if (r == EXCP_DEBUG) {
                cpu_handle_guest_debug(cpu);
            }
        }
        qemu_wait_io_event(cpu);
    } while (!cpu->unplug || cpu_can_run(cpu));

    hvf_vcpu_destroy(cpu);
    cpu_thread_signal_destroyed(cpu);
    qemu_mutex_unlock_iothread();
    rcu_unregister_thread();
    return NULL;
}

static void *qemu_whpx_cpu_thread_fn(void *arg)
{
    CPUState *cpu = arg;
    int r;

    rcu_register_thread();

    qemu_mutex_lock_iothread();
    qemu_thread_get_self(cpu->thread);
    cpu->thread_id = qemu_get_thread_id();
    current_cpu = cpu;

    r = whpx_init_vcpu(cpu);
    if (r < 0) {
        fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
        exit(1);
    }

    /* signal CPU creation */
    cpu_thread_signal_created(cpu);
    qemu_guest_random_seed_thread_part2(cpu->random_seed);

    do {
        if (cpu_can_run(cpu)) {
            r = whpx_vcpu_exec(cpu);
            if (r == EXCP_DEBUG) {
                cpu_handle_guest_debug(cpu);
            }
        }
        while (cpu_thread_is_idle(cpu)) {
            qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
        }
        qemu_wait_io_event_common(cpu);
    } while (!cpu->unplug || cpu_can_run(cpu));

    whpx_destroy_vcpu(cpu);
    cpu_thread_signal_destroyed(cpu);
    qemu_mutex_unlock_iothread();
    rcu_unregister_thread();
    return NULL;
}

#ifdef _WIN32
static void CALLBACK dummy_apc_func(ULONG_PTR unused)
{
}
#endif

void cpus_kick_thread(CPUState *cpu)
{
#ifndef _WIN32
    int err;

    if (cpu->thread_kicked) {
        return;
    }
    cpu->thread_kicked = true;
    err = pthread_kill(cpu->thread->thread, SIG_IPI);
    if (err && err != ESRCH) {
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
        exit(1);
    }
#else /* _WIN32 */
    if (!qemu_cpu_is_self(cpu)) {
        if (whpx_enabled()) {
            whpx_vcpu_kick(cpu);
        } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
            fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
                    __func__, GetLastError());
            exit(1);
        }
    }
#endif
}

void qemu_cpu_kick(CPUState *cpu)
{
    qemu_cond_broadcast(cpu->halt_cond);
    if (cpus_accel && cpus_accel->kick_vcpu_thread) {
        cpus_accel->kick_vcpu_thread(cpu);
    } else {
        if (hax_enabled()) {
            /*
             * FIXME: race condition with the exit_request check in
             * hax_vcpu_hax_exec
             */
            cpu->exit_request = 1;
        }
        cpus_kick_thread(cpu);
    }
}

void qemu_cpu_kick_self(void)
{
    assert(current_cpu);
    cpus_kick_thread(current_cpu);
}

bool qemu_cpu_is_self(CPUState *cpu)
{
    return qemu_thread_is_self(cpu->thread);
}

bool qemu_in_vcpu_thread(void)
{
    return current_cpu && qemu_cpu_is_self(current_cpu);
}

static __thread bool iothread_locked = false;

bool qemu_mutex_iothread_locked(void)
{
    return iothread_locked;
}

/*
 * The BQL is taken from so many places that it is worth profiling the
 * callers directly, instead of funneling them all through a single function.
 */
void qemu_mutex_lock_iothread_impl(const char *file, int line)
{
    QemuMutexLockFunc bql_lock = qatomic_read(&qemu_bql_mutex_lock_func);

    g_assert(!qemu_mutex_iothread_locked());
    bql_lock(&qemu_global_mutex, file, line);
    iothread_locked = true;
}

void qemu_mutex_unlock_iothread(void)
{
    g_assert(qemu_mutex_iothread_locked());
    iothread_locked = false;
    qemu_mutex_unlock(&qemu_global_mutex);
}

void qemu_cond_wait_iothread(QemuCond *cond)
{
    qemu_cond_wait(cond, &qemu_global_mutex);
}

void qemu_cond_timedwait_iothread(QemuCond *cond, int ms)
{
    qemu_cond_timedwait(cond, &qemu_global_mutex, ms);
}

/* signal CPU creation */
void cpu_thread_signal_created(CPUState *cpu)
{
    cpu->created = true;
    qemu_cond_signal(&qemu_cpu_cond);
}

/* signal CPU destruction */
void cpu_thread_signal_destroyed(CPUState *cpu)
{
    cpu->created = false;
    qemu_cond_signal(&qemu_cpu_cond);
}


static bool all_vcpus_paused(void)
{
    CPUState *cpu;

    CPU_FOREACH(cpu) {
        if (!cpu->stopped) {
            return false;
        }
    }

    return true;
}

void pause_all_vcpus(void)
{
    CPUState *cpu;

    qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
    CPU_FOREACH(cpu) {
        if (qemu_cpu_is_self(cpu)) {
            qemu_cpu_stop(cpu, true);
        } else {
            cpu->stop = true;
            qemu_cpu_kick(cpu);
        }
    }

    /* We need to drop the replay_lock so any vCPU threads woken up
     * can finish their replay tasks
     */
    replay_mutex_unlock();

    while (!all_vcpus_paused()) {
        qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
        CPU_FOREACH(cpu) {
            qemu_cpu_kick(cpu);
        }
    }

    qemu_mutex_unlock_iothread();
    replay_mutex_lock();
    qemu_mutex_lock_iothread();
}

void cpu_resume(CPUState *cpu)
{
    cpu->stop = false;
    cpu->stopped = false;
    qemu_cpu_kick(cpu);
}

void resume_all_vcpus(void)
{
    CPUState *cpu;

    if (!runstate_is_running()) {
        return;
    }

    qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
    CPU_FOREACH(cpu) {
        cpu_resume(cpu);
    }
}

void cpu_remove_sync(CPUState *cpu)
{
    cpu->stop = true;
    cpu->unplug = true;
    qemu_cpu_kick(cpu);
    qemu_mutex_unlock_iothread();
    qemu_thread_join(cpu->thread);
    qemu_mutex_lock_iothread();
}

static void qemu_hax_start_vcpu(CPUState *cpu)
{
    char thread_name[VCPU_THREAD_NAME_SIZE];

    cpu->thread = g_malloc0(sizeof(QemuThread));
    cpu->halt_cond = g_malloc0(sizeof(QemuCond));
    qemu_cond_init(cpu->halt_cond);

    snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
             cpu->cpu_index);
    qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
                       cpu, QEMU_THREAD_JOINABLE);
#ifdef _WIN32
    cpu->hThread = qemu_thread_get_handle(cpu->thread);
#endif
}

static void qemu_hvf_start_vcpu(CPUState *cpu)
{
    char thread_name[VCPU_THREAD_NAME_SIZE];

    /* HVF currently does not support TCG, and only runs in
     * unrestricted-guest mode. */
    assert(hvf_enabled());

    cpu->thread = g_malloc0(sizeof(QemuThread));
    cpu->halt_cond = g_malloc0(sizeof(QemuCond));
    qemu_cond_init(cpu->halt_cond);

    snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
             cpu->cpu_index);
    qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
                       cpu, QEMU_THREAD_JOINABLE);
}

static void qemu_whpx_start_vcpu(CPUState *cpu)
{
    char thread_name[VCPU_THREAD_NAME_SIZE];

    cpu->thread = g_malloc0(sizeof(QemuThread));
    cpu->halt_cond = g_malloc0(sizeof(QemuCond));
    qemu_cond_init(cpu->halt_cond);
    snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
             cpu->cpu_index);
    qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
                       cpu, QEMU_THREAD_JOINABLE);
#ifdef _WIN32
    cpu->hThread = qemu_thread_get_handle(cpu->thread);
#endif
}

void cpus_register_accel(const CpusAccel *ca)
{
    assert(ca != NULL);
    assert(ca->create_vcpu_thread != NULL); /* mandatory */
    cpus_accel = ca;
}

void qemu_init_vcpu(CPUState *cpu)
{
    MachineState *ms = MACHINE(qdev_get_machine());

    cpu->nr_cores = ms->smp.cores;
    cpu->nr_threads =  ms->smp.threads;
    cpu->stopped = true;
    cpu->random_seed = qemu_guest_random_seed_thread_part1();

    if (!cpu->as) {
        /* If the target cpu hasn't set up any address spaces itself,
         * give it the default one.
         */
        cpu->num_ases = 1;
        cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
    }

    if (cpus_accel) {
        /* accelerator already implements the CpusAccel interface */
        cpus_accel->create_vcpu_thread(cpu);
    } else if (hax_enabled()) {
        qemu_hax_start_vcpu(cpu);
    } else if (hvf_enabled()) {
        qemu_hvf_start_vcpu(cpu);
    } else if (whpx_enabled()) {
        qemu_whpx_start_vcpu(cpu);
    } else {
        g_assert_not_reached();
    }

    while (!cpu->created) {
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
    }
}

void cpu_stop_current(void)
{
    if (current_cpu) {
        current_cpu->stop = true;
        cpu_exit(current_cpu);
    }
}

int vm_stop(RunState state)
{
    if (qemu_in_vcpu_thread()) {
        qemu_system_vmstop_request_prepare();
        qemu_system_vmstop_request(state);
        /*
         * FIXME: should not return to device code in case
         * vm_stop() has been requested.
         */
        cpu_stop_current();
        return 0;
    }

    return do_vm_stop(state, true);
}

/**
 * Prepare for (re)starting the VM.
 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
 * running or in case of an error condition), 0 otherwise.
 */
int vm_prepare_start(void)
{
    RunState requested;

    qemu_vmstop_requested(&requested);
    if (runstate_is_running() && requested == RUN_STATE__MAX) {
        return -1;
    }

    /* Ensure that a STOP/RESUME pair of events is emitted if a
     * vmstop request was pending.  The BLOCK_IO_ERROR event, for
     * example, according to documentation is always followed by
     * the STOP event.
     */
    if (runstate_is_running()) {
        qapi_event_send_stop();
        qapi_event_send_resume();
        return -1;
    }

    /* We are sending this now, but the CPUs will be resumed shortly later */
    qapi_event_send_resume();

    cpu_enable_ticks();
    runstate_set(RUN_STATE_RUNNING);
    vm_state_notify(1, RUN_STATE_RUNNING);
    return 0;
}

void vm_start(void)
{
    if (!vm_prepare_start()) {
        resume_all_vcpus();
    }
}

/* does a state transition even if the VM is already stopped,
   current state is forgotten forever */
int vm_stop_force_state(RunState state)
{
    if (runstate_is_running()) {
        return vm_stop(state);
    } else {
        runstate_set(state);

        bdrv_drain_all();
        /* Make sure to return an error if the flush in a previous vm_stop()
         * failed. */
        return bdrv_flush_all();
    }
}

void list_cpus(const char *optarg)
{
    /* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list)
    cpu_list();
#endif
}

void qmp_memsave(int64_t addr, int64_t size, const char *filename,
                 bool has_cpu, int64_t cpu_index, Error **errp)
{
    FILE *f;
    uint32_t l;
    CPUState *cpu;
    uint8_t buf[1024];
    int64_t orig_addr = addr, orig_size = size;

    if (!has_cpu) {
        cpu_index = 0;
    }

    cpu = qemu_get_cpu(cpu_index);
    if (cpu == NULL) {
        error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
                   "a CPU number");
        return;
    }

    f = fopen(filename, "wb");
    if (!f) {
        error_setg_file_open(errp, errno, filename);
        return;
    }

    while (size != 0) {
        l = sizeof(buf);
        if (l > size)
            l = size;
        if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
            error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
                             " specified", orig_addr, orig_size);
            goto exit;
        }
        if (fwrite(buf, 1, l, f) != l) {
            error_setg(errp, QERR_IO_ERROR);
            goto exit;
        }
        addr += l;
        size -= l;
    }

exit:
    fclose(f);
}

void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
                  Error **errp)
{
    FILE *f;
    uint32_t l;
    uint8_t buf[1024];

    f = fopen(filename, "wb");
    if (!f) {
        error_setg_file_open(errp, errno, filename);
        return;
    }

    while (size != 0) {
        l = sizeof(buf);
        if (l > size)
            l = size;
        cpu_physical_memory_read(addr, buf, l);
        if (fwrite(buf, 1, l, f) != l) {
            error_setg(errp, QERR_IO_ERROR);
            goto exit;
        }
        addr += l;
        size -= l;
    }

exit:
    fclose(f);
}

void qmp_inject_nmi(Error **errp)
{
    nmi_monitor_handle(monitor_get_cpu_index(), errp);
}