1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/*
* Copyright (c) 1995 Danny Gasparovski.
*
* Please read the file COPYRIGHT for the
* terms and conditions of the copyright.
*/
#include "qemu/osdep.h"
#include "slirp.h"
#include "libslirp.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#ifdef DEBUG
int slirp_debug = DBG_CALL|DBG_MISC|DBG_ERROR;
#endif
inline void
insque(void *a, void *b)
{
register struct quehead *element = (struct quehead *) a;
register struct quehead *head = (struct quehead *) b;
element->qh_link = head->qh_link;
head->qh_link = (struct quehead *)element;
element->qh_rlink = (struct quehead *)head;
((struct quehead *)(element->qh_link))->qh_rlink
= (struct quehead *)element;
}
inline void
remque(void *a)
{
register struct quehead *element = (struct quehead *) a;
((struct quehead *)(element->qh_link))->qh_rlink = element->qh_rlink;
((struct quehead *)(element->qh_rlink))->qh_link = element->qh_link;
element->qh_rlink = NULL;
}
int add_exec(struct ex_list **ex_ptr, void *chardev, const char *cmdline,
struct in_addr addr, int port)
{
struct ex_list *tmp_ptr;
/* First, check if the port is "bound" */
for (tmp_ptr = *ex_ptr; tmp_ptr; tmp_ptr = tmp_ptr->ex_next) {
if (port == tmp_ptr->ex_fport &&
addr.s_addr == tmp_ptr->ex_addr.s_addr)
return -1;
}
tmp_ptr = *ex_ptr;
*ex_ptr = g_new0(struct ex_list, 1);
(*ex_ptr)->ex_fport = port;
(*ex_ptr)->ex_addr = addr;
if (chardev) {
(*ex_ptr)->ex_chardev = chardev;
} else {
(*ex_ptr)->ex_exec = g_strdup(cmdline);
}
(*ex_ptr)->ex_next = tmp_ptr;
return 0;
}
#ifdef _WIN32
int
fork_exec(struct socket *so, const char *ex)
{
/* not implemented */
return 0;
}
#else
static int
slirp_socketpair_with_oob(int sv[2])
{
struct sockaddr_in addr = {
.sin_family = AF_INET,
.sin_port = 0,
.sin_addr.s_addr = INADDR_ANY,
};
socklen_t addrlen = sizeof(addr);
int ret, s;
sv[1] = -1;
s = qemu_socket(AF_INET, SOCK_STREAM, 0);
if (s < 0 || bind(s, (struct sockaddr *)&addr, addrlen) < 0 ||
listen(s, 1) < 0 ||
getsockname(s, (struct sockaddr *)&addr, &addrlen) < 0) {
goto err;
}
sv[1] = qemu_socket(AF_INET, SOCK_STREAM, 0);
if (sv[1] < 0) {
goto err;
}
/*
* This connect won't block because we've already listen()ed on
* the server end (even though we won't accept() the connection
* until later on).
*/
do {
ret = connect(sv[1], (struct sockaddr *)&addr, addrlen);
} while (ret < 0 && errno == EINTR);
if (ret < 0) {
goto err;
}
do {
sv[0] = accept(s, (struct sockaddr *)&addr, &addrlen);
} while (sv[0] < 0 && errno == EINTR);
if (sv[0] < 0) {
goto err;
}
closesocket(s);
return 0;
err:
g_critical("slirp_socketpair(): %s", strerror(errno));
if (s >= 0) {
closesocket(s);
}
if (sv[1] >= 0) {
closesocket(sv[1]);
}
return -1;
}
static void
fork_exec_child_setup(gpointer data)
{
setsid();
}
int
fork_exec(struct socket *so, const char *ex)
{
GError *err = NULL;
char **argv;
int opt, sp[2];
DEBUG_CALL("fork_exec");
DEBUG_ARG("so = %p", so);
DEBUG_ARG("ex = %p", ex);
if (slirp_socketpair_with_oob(sp) < 0) {
return 0;
}
argv = g_strsplit(ex, " ", -1);
g_spawn_async_with_fds(NULL /* cwd */,
argv,
NULL /* env */,
G_SPAWN_SEARCH_PATH,
fork_exec_child_setup, NULL /* data */,
NULL /* child_pid */,
sp[1], sp[1], sp[1],
&err);
g_strfreev(argv);
if (err) {
error_report("%s", err->message);
g_error_free(err);
closesocket(sp[0]);
closesocket(sp[1]);
return 0;
}
so->s = sp[0];
closesocket(sp[1]);
socket_set_fast_reuse(so->s);
opt = 1;
qemu_setsockopt(so->s, SOL_SOCKET, SO_OOBINLINE, &opt, sizeof(int));
qemu_set_nonblock(so->s);
return 1;
}
#endif
char *slirp_connection_info(Slirp *slirp)
{
GString *str = g_string_new(NULL);
const char * const tcpstates[] = {
[TCPS_CLOSED] = "CLOSED",
[TCPS_LISTEN] = "LISTEN",
[TCPS_SYN_SENT] = "SYN_SENT",
[TCPS_SYN_RECEIVED] = "SYN_RCVD",
[TCPS_ESTABLISHED] = "ESTABLISHED",
[TCPS_CLOSE_WAIT] = "CLOSE_WAIT",
[TCPS_FIN_WAIT_1] = "FIN_WAIT_1",
[TCPS_CLOSING] = "CLOSING",
[TCPS_LAST_ACK] = "LAST_ACK",
[TCPS_FIN_WAIT_2] = "FIN_WAIT_2",
[TCPS_TIME_WAIT] = "TIME_WAIT",
};
struct in_addr dst_addr;
struct sockaddr_in src;
socklen_t src_len;
uint16_t dst_port;
struct socket *so;
const char *state;
char buf[20];
g_string_append_printf(str,
" Protocol[State] FD Source Address Port "
"Dest. Address Port RecvQ SendQ\n");
for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) {
if (so->so_state & SS_HOSTFWD) {
state = "HOST_FORWARD";
} else if (so->so_tcpcb) {
state = tcpstates[so->so_tcpcb->t_state];
} else {
state = "NONE";
}
if (so->so_state & (SS_HOSTFWD | SS_INCOMING)) {
src_len = sizeof(src);
getsockname(so->s, (struct sockaddr *)&src, &src_len);
dst_addr = so->so_laddr;
dst_port = so->so_lport;
} else {
src.sin_addr = so->so_laddr;
src.sin_port = so->so_lport;
dst_addr = so->so_faddr;
dst_port = so->so_fport;
}
snprintf(buf, sizeof(buf), " TCP[%s]", state);
g_string_append_printf(str, "%-19s %3d %15s %5d ", buf, so->s,
src.sin_addr.s_addr ? inet_ntoa(src.sin_addr) : "*",
ntohs(src.sin_port));
g_string_append_printf(str, "%15s %5d %5d %5d\n",
inet_ntoa(dst_addr), ntohs(dst_port),
so->so_rcv.sb_cc, so->so_snd.sb_cc);
}
for (so = slirp->udb.so_next; so != &slirp->udb; so = so->so_next) {
if (so->so_state & SS_HOSTFWD) {
snprintf(buf, sizeof(buf), " UDP[HOST_FORWARD]");
src_len = sizeof(src);
getsockname(so->s, (struct sockaddr *)&src, &src_len);
dst_addr = so->so_laddr;
dst_port = so->so_lport;
} else {
snprintf(buf, sizeof(buf), " UDP[%d sec]",
(so->so_expire - curtime) / 1000);
src.sin_addr = so->so_laddr;
src.sin_port = so->so_lport;
dst_addr = so->so_faddr;
dst_port = so->so_fport;
}
g_string_append_printf(str, "%-19s %3d %15s %5d ", buf, so->s,
src.sin_addr.s_addr ? inet_ntoa(src.sin_addr) : "*",
ntohs(src.sin_port));
g_string_append_printf(str, "%15s %5d %5d %5d\n",
inet_ntoa(dst_addr), ntohs(dst_port),
so->so_rcv.sb_cc, so->so_snd.sb_cc);
}
for (so = slirp->icmp.so_next; so != &slirp->icmp; so = so->so_next) {
snprintf(buf, sizeof(buf), " ICMP[%d sec]",
(so->so_expire - curtime) / 1000);
src.sin_addr = so->so_laddr;
dst_addr = so->so_faddr;
g_string_append_printf(str, "%-19s %3d %15s - ", buf, so->s,
src.sin_addr.s_addr ? inet_ntoa(src.sin_addr) : "*");
g_string_append_printf(str, "%15s - %5d %5d\n", inet_ntoa(dst_addr),
so->so_rcv.sb_cc, so->so_snd.sb_cc);
}
return g_string_free(str, FALSE);
}
|