aboutsummaryrefslogtreecommitdiff
path: root/qemu-coroutine.h
blob: 2f2fd9555236e275c1aa7d213dd89e71b75777a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*
 * QEMU coroutine implementation
 *
 * Copyright IBM, Corp. 2011
 *
 * Authors:
 *  Stefan Hajnoczi    <stefanha@linux.vnet.ibm.com>
 *  Kevin Wolf         <kwolf@redhat.com>
 *
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
 * See the COPYING.LIB file in the top-level directory.
 *
 */

#ifndef QEMU_COROUTINE_H
#define QEMU_COROUTINE_H

#include <stdbool.h>
#include "qemu-queue.h"

/**
 * Coroutines are a mechanism for stack switching and can be used for
 * cooperative userspace threading.  These functions provide a simple but
 * useful flavor of coroutines that is suitable for writing sequential code,
 * rather than callbacks, for operations that need to give up control while
 * waiting for events to complete.
 *
 * These functions are re-entrant and may be used outside the global mutex.
 */

/**
 * Mark a function that executes in coroutine context
 *
 * Functions that execute in coroutine context cannot be called directly from
 * normal functions.  In the future it would be nice to enable compiler or
 * static checker support for catching such errors.  This annotation might make
 * it possible and in the meantime it serves as documentation.
 *
 * For example:
 *
 *   static void coroutine_fn foo(void) {
 *       ....
 *   }
 */
#define coroutine_fn

typedef struct Coroutine Coroutine;

/**
 * Coroutine entry point
 *
 * When the coroutine is entered for the first time, opaque is passed in as an
 * argument.
 *
 * When this function returns, the coroutine is destroyed automatically and
 * execution continues in the caller who last entered the coroutine.
 */
typedef void coroutine_fn CoroutineEntry(void *opaque);

/**
 * Create a new coroutine
 *
 * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
 */
Coroutine *qemu_coroutine_create(CoroutineEntry *entry);

/**
 * Transfer control to a coroutine
 *
 * The opaque argument is passed as the argument to the entry point when
 * entering the coroutine for the first time.  It is subsequently ignored.
 */
void qemu_coroutine_enter(Coroutine *coroutine, void *opaque);

/**
 * Transfer control back to a coroutine's caller
 *
 * This function does not return until the coroutine is re-entered using
 * qemu_coroutine_enter().
 */
void coroutine_fn qemu_coroutine_yield(void);

/**
 * Get the currently executing coroutine
 */
Coroutine *coroutine_fn qemu_coroutine_self(void);

/**
 * Return whether or not currently inside a coroutine
 *
 * This can be used to write functions that work both when in coroutine context
 * and when not in coroutine context.  Note that such functions cannot use the
 * coroutine_fn annotation since they work outside coroutine context.
 */
bool qemu_in_coroutine(void);



/**
 * CoQueues are a mechanism to queue coroutines in order to continue executing
 * them later. They provide the fundamental primitives on which coroutine locks
 * are built.
 */
typedef struct CoQueue {
    QTAILQ_HEAD(, Coroutine) entries;
} CoQueue;

/**
 * Initialise a CoQueue. This must be called before any other operation is used
 * on the CoQueue.
 */
void qemu_co_queue_init(CoQueue *queue);

/**
 * Adds the current coroutine to the CoQueue and transfers control to the
 * caller of the coroutine.
 */
void coroutine_fn qemu_co_queue_wait(CoQueue *queue);

/**
 * Restarts the next coroutine in the CoQueue and removes it from the queue.
 *
 * Returns true if a coroutine was restarted, false if the queue is empty.
 */
bool qemu_co_queue_next(CoQueue *queue);

/**
 * Checks if the CoQueue is empty.
 */
bool qemu_co_queue_empty(CoQueue *queue);


/**
 * Provides a mutex that can be used to synchronise coroutines
 */
typedef struct CoMutex {
    bool locked;
    CoQueue queue;
} CoMutex;

/**
 * Initialises a CoMutex. This must be called before any other operation is used
 * on the CoMutex.
 */
void qemu_co_mutex_init(CoMutex *mutex);

/**
 * Locks the mutex. If the lock cannot be taken immediately, control is
 * transferred to the caller of the current coroutine.
 */
void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);

/**
 * Unlocks the mutex and schedules the next coroutine that was waiting for this
 * lock to be run.
 */
void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);

#endif /* QEMU_COROUTINE_H */