aboutsummaryrefslogtreecommitdiff
path: root/plugins/api.c
blob: 218e1342cda387d8b637388bf4bbf7c5df50d303 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*
 * QEMU Plugin API
 *
 * This provides the API that is available to the plugins to interact
 * with QEMU. We have to be careful not to expose internal details of
 * how QEMU works so we abstract out things like translation and
 * instructions to anonymous data types:
 *
 *  qemu_plugin_tb
 *  qemu_plugin_insn
 *
 * Which can then be passed back into the API to do additional things.
 * As such all the public functions in here are exported in
 * qemu-plugin.h.
 *
 * The general life-cycle of a plugin is:
 *
 *  - plugin is loaded, public qemu_plugin_install called
 *    - the install func registers callbacks for events
 *    - usually an atexit_cb is registered to dump info at the end
 *  - when a registered event occurs the plugin is called
 *     - some events pass additional info
 *     - during translation the plugin can decide to instrument any
 *       instruction
 *  - when QEMU exits all the registered atexit callbacks are called
 *
 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
 * Copyright (C) 2019, Linaro
 *
 * License: GNU GPL, version 2 or later.
 *   See the COPYING file in the top-level directory.
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 *
 */

#include "qemu/osdep.h"
#include "qemu/plugin.h"
#include "cpu.h"
#include "tcg/tcg.h"
#include "exec/exec-all.h"
#include "exec/ram_addr.h"
#include "disas/disas.h"
#include "plugin.h"
#ifndef CONFIG_USER_ONLY
#include "qemu/plugin-memory.h"
#include "hw/boards.h"
#endif
#include "trace/mem.h"

/* Uninstall and Reset handlers */

void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
{
    plugin_reset_uninstall(id, cb, false);
}

void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
{
    plugin_reset_uninstall(id, cb, true);
}

/*
 * Plugin Register Functions
 *
 * This allows the plugin to register callbacks for various events
 * during the translation.
 */

void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
                                       qemu_plugin_vcpu_simple_cb_t cb)
{
    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
}

void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
                                       qemu_plugin_vcpu_simple_cb_t cb)
{
    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
}

void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
                                          qemu_plugin_vcpu_udata_cb_t cb,
                                          enum qemu_plugin_cb_flags flags,
                                          void *udata)
{
    if (!tb->mem_only) {
        plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
                                      cb, flags, udata);
    }
}

void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
                                              enum qemu_plugin_op op,
                                              void *ptr, uint64_t imm)
{
    if (!tb->mem_only) {
        plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
    }
}

void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
                                            qemu_plugin_vcpu_udata_cb_t cb,
                                            enum qemu_plugin_cb_flags flags,
                                            void *udata)
{
    if (!insn->mem_only) {
        plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
                                      cb, flags, udata);
    }
}

void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
                                                enum qemu_plugin_op op,
                                                void *ptr, uint64_t imm)
{
    if (!insn->mem_only) {
        plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
                                  0, op, ptr, imm);
    }
}


/*
 * We always plant memory instrumentation because they don't finalise until
 * after the operation has complete.
 */
void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
                                      qemu_plugin_vcpu_mem_cb_t cb,
                                      enum qemu_plugin_cb_flags flags,
                                      enum qemu_plugin_mem_rw rw,
                                      void *udata)
{
    plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
                                    cb, flags, rw, udata);
}

void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
                                          enum qemu_plugin_mem_rw rw,
                                          enum qemu_plugin_op op, void *ptr,
                                          uint64_t imm)
{
    plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
                              rw, op, ptr, imm);
}

void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
                                           qemu_plugin_vcpu_tb_trans_cb_t cb)
{
    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
}

void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
                                          qemu_plugin_vcpu_syscall_cb_t cb)
{
    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
}

void
qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
                                         qemu_plugin_vcpu_syscall_ret_cb_t cb)
{
    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
}

/*
 * Plugin Queries
 *
 * These are queries that the plugin can make to gauge information
 * from our opaque data types. We do not want to leak internal details
 * here just information useful to the plugin.
 */

/*
 * Translation block information:
 *
 * A plugin can query the virtual address of the start of the block
 * and the number of instructions in it. It can also get access to
 * each translated instruction.
 */

size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
{
    return tb->n;
}

uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
{
    return tb->vaddr;
}

struct qemu_plugin_insn *
qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
{
    struct qemu_plugin_insn *insn;
    if (unlikely(idx >= tb->n)) {
        return NULL;
    }
    insn = g_ptr_array_index(tb->insns, idx);
    insn->mem_only = tb->mem_only;
    return insn;
}

/*
 * Instruction information
 *
 * These queries allow the plugin to retrieve information about each
 * instruction being translated.
 */

const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
{
    return insn->data->data;
}

size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
{
    return insn->data->len;
}

uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
{
    return insn->vaddr;
}

void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
{
    return insn->haddr;
}

char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
{
    CPUState *cpu = current_cpu;
    return plugin_disas(cpu, insn->vaddr, insn->data->len);
}

/*
 * The memory queries allow the plugin to query information about a
 * memory access.
 */

unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
{
    return info & TRACE_MEM_SZ_SHIFT_MASK;
}

bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
{
    return !!(info & TRACE_MEM_SE);
}

bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
{
    return !!(info & TRACE_MEM_BE);
}

bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
{
    return !!(info & TRACE_MEM_ST);
}

/*
 * Virtual Memory queries
 */

#ifdef CONFIG_SOFTMMU
static __thread struct qemu_plugin_hwaddr hwaddr_info;
#endif

struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
                                                  uint64_t vaddr)
{
#ifdef CONFIG_SOFTMMU
    CPUState *cpu = current_cpu;
    unsigned int mmu_idx = info >> TRACE_MEM_MMU_SHIFT;
    hwaddr_info.is_store = info & TRACE_MEM_ST;

    if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
                           info & TRACE_MEM_ST, &hwaddr_info)) {
        error_report("invalid use of qemu_plugin_get_hwaddr");
        return NULL;
    }

    return &hwaddr_info;
#else
    return NULL;
#endif
}

bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
{
#ifdef CONFIG_SOFTMMU
    return haddr->is_io;
#else
    return false;
#endif
}

uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
{
#ifdef CONFIG_SOFTMMU
    if (haddr) {
        if (!haddr->is_io) {
            RAMBlock *block;
            ram_addr_t offset;
            void *hostaddr = (void *) haddr->v.ram.hostaddr;

            block = qemu_ram_block_from_host(hostaddr, false, &offset);
            if (!block) {
                error_report("Bad ram pointer %"PRIx64"", haddr->v.ram.hostaddr);
                abort();
            }

            return block->offset + offset + block->mr->addr;
        } else {
            MemoryRegionSection *mrs = haddr->v.io.section;
            return haddr->v.io.offset + mrs->mr->addr;
        }
    }
#endif
    return 0;
}

const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
{
#ifdef CONFIG_SOFTMMU
    if (h && h->is_io) {
        MemoryRegionSection *mrs = h->v.io.section;
        if (!mrs->mr->name) {
            unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
            g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
            return g_intern_string(temp);
        } else {
            return g_intern_string(mrs->mr->name);
        }
    } else {
        return g_intern_static_string("RAM");
    }
#else
    return g_intern_static_string("Invalid");
#endif
}

/*
 * Queries to the number and potential maximum number of vCPUs there
 * will be. This helps the plugin dimension per-vcpu arrays.
 */

#ifndef CONFIG_USER_ONLY
static MachineState * get_ms(void)
{
    return MACHINE(qdev_get_machine());
}
#endif

int qemu_plugin_n_vcpus(void)
{
#ifdef CONFIG_USER_ONLY
    return -1;
#else
    return get_ms()->smp.cpus;
#endif
}

int qemu_plugin_n_max_vcpus(void)
{
#ifdef CONFIG_USER_ONLY
    return -1;
#else
    return get_ms()->smp.max_cpus;
#endif
}

/*
 * Plugin output
 */
void qemu_plugin_outs(const char *string)
{
    qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
}