aboutsummaryrefslogtreecommitdiff
path: root/pc-bios/optionrom/linuxboot_dma.c
blob: 8509b287ba8990abd8b1e76a99b9d2c26b3f0724 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*
 * Linux Boot Option ROM for fw_cfg DMA
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright (c) 2015-2016 Red Hat Inc.
 *   Authors:
 *     Marc Marí <marc.mari.barcelo@gmail.com>
 *     Richard W.M. Jones <rjones@redhat.com>
 */

asm(
".text\n"
".global _start\n"
"_start:\n"
"   .short 0xaa55\n"
"   .byte 0\n" /* size in 512 units, filled in by signrom.py */
"   .byte 0xcb\n" /* far return without prefix */
"   .org 0x18\n"
"   .short 0\n"
"   .short _pnph\n"
"_pnph:\n"
"   .ascii \"$PnP\"\n"
"   .byte 0x01\n"
"   .byte (_pnph_len / 16)\n"
"   .short 0x0000\n"
"   .byte 0x00\n"
"   .byte 0x00\n"
"   .long 0x00000000\n"
"   .short _manufacturer\n"
"   .short _product\n"
"   .long 0x00000000\n"
"   .short 0x0000\n"
"   .short 0x0000\n"
"   .short _bev\n"
"   .short 0x0000\n"
"   .short 0x0000\n"
"   .equ _pnph_len, . - _pnph\n"
"_manufacturer:\n"
"   .asciz \"QEMU\"\n"
"_product:\n"
"   .asciz \"Linux loader DMA\"\n"
"   .align 4, 0\n"
"_bev:\n"
"   cli\n"
"   cld\n"
"   jmp load_kernel\n"
);

#include "../../include/hw/nvram/fw_cfg_keys.h"

/* QEMU_CFG_DMA_CONTROL bits */
#define BIOS_CFG_DMA_CTL_ERROR   0x01
#define BIOS_CFG_DMA_CTL_READ    0x02
#define BIOS_CFG_DMA_CTL_SKIP    0x04
#define BIOS_CFG_DMA_CTL_SELECT  0x08

#define BIOS_CFG_DMA_ADDR_HIGH 0x514
#define BIOS_CFG_DMA_ADDR_LOW  0x518

#define uint64_t unsigned long long
#define uint32_t unsigned int
#define uint16_t unsigned short

#define barrier() asm("" : : : "memory")

typedef struct FWCfgDmaAccess {
    uint32_t control;
    uint32_t length;
    uint64_t address;
} __attribute__((packed)) FWCfgDmaAccess;

static inline void outl(uint32_t value, uint16_t port)
{
    asm("outl %0, %w1" : : "a"(value), "Nd"(port));
}

static inline void set_es(void *addr)
{
    uint32_t seg = (uint32_t)addr >> 4;
    asm("movl %0, %%es" : : "r"(seg));
}

#ifdef __clang__
#define ADDR32
#else
#define ADDR32 "addr32 "
#endif

static inline uint16_t readw_es(uint16_t offset)
{
    uint16_t val;
    asm(ADDR32 "movw %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset));
    barrier();
    return val;
}

static inline uint32_t readl_es(uint16_t offset)
{
    uint32_t val;
    asm(ADDR32 "movl %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset));
    barrier();
    return val;
}

static inline void writel_es(uint16_t offset, uint32_t val)
{
    barrier();
    asm(ADDR32 "movl %0, %%es:(%1)" : : "r"(val), "r"((uint32_t)offset));
}

static inline uint32_t bswap32(uint32_t x)
{
    return
        ((x & 0x000000ffU) << 24) |
        ((x & 0x0000ff00U) <<  8) |
        ((x & 0x00ff0000U) >>  8) |
        ((x & 0xff000000U) >> 24);
}

static inline uint64_t bswap64(uint64_t x)
{
    return
        ((x & 0x00000000000000ffULL) << 56) |
        ((x & 0x000000000000ff00ULL) << 40) |
        ((x & 0x0000000000ff0000ULL) << 24) |
        ((x & 0x00000000ff000000ULL) <<  8) |
        ((x & 0x000000ff00000000ULL) >>  8) |
        ((x & 0x0000ff0000000000ULL) >> 24) |
        ((x & 0x00ff000000000000ULL) >> 40) |
        ((x & 0xff00000000000000ULL) >> 56);
}

static inline uint64_t cpu_to_be64(uint64_t x)
{
    return bswap64(x);
}

static inline uint32_t cpu_to_be32(uint32_t x)
{
    return bswap32(x);
}

static inline uint32_t be32_to_cpu(uint32_t x)
{
    return bswap32(x);
}

static void bios_cfg_read_entry(void *buf, uint16_t entry, uint32_t len)
{
    FWCfgDmaAccess access;
    uint32_t control = (entry << 16) | BIOS_CFG_DMA_CTL_SELECT
                        | BIOS_CFG_DMA_CTL_READ;

    access.address = cpu_to_be64((uint64_t)(uint32_t)buf);
    access.length = cpu_to_be32(len);
    access.control = cpu_to_be32(control);

    barrier();

    outl(cpu_to_be32((uint32_t)&access), BIOS_CFG_DMA_ADDR_LOW);

    while (be32_to_cpu(access.control) & ~BIOS_CFG_DMA_CTL_ERROR) {
        barrier();
    }
}

/* Return top of memory using BIOS function E801. */
static uint32_t get_e801_addr(void)
{
    uint16_t ax, bx, cx, dx;
    uint32_t ret;

    asm("int $0x15\n"
        : "=a"(ax), "=b"(bx), "=c"(cx), "=d"(dx)
        : "a"(0xe801), "b"(0), "c"(0), "d"(0));

    /* Not SeaBIOS, but in theory a BIOS could return CX=DX=0 in which
     * case we need to use the result from AX & BX instead.
     */
    if (cx == 0 && dx == 0) {
        cx = ax;
        dx = bx;
    }

    if (dx) {
        /* DX = extended memory above 16M, in 64K units.
         * Convert it to bytes and return.
         */
        ret = ((uint32_t)dx + 256 /* 16M in 64K units */) << 16;
    } else {
        /* This is a fallback path for machines with <= 16MB of RAM,
         * which probably would never be the case, but deal with it
         * anyway.
         *
         * CX = extended memory between 1M and 16M, in kilobytes
         * Convert it to bytes and return.
         */
        ret = ((uint32_t)cx + 1024 /* 1M in K */) << 10;
    }

    return ret;
}

/* Force the asm name without leading underscore, even on Win32. */
extern void load_kernel(void) asm("load_kernel");

void load_kernel(void)
{
    void *setup_addr;
    void *initrd_addr;
    void *kernel_addr;
    void *cmdline_addr;
    uint32_t setup_size;
    uint32_t initrd_size;
    uint32_t kernel_size;
    uint32_t cmdline_size;
    uint32_t initrd_end_page, max_allowed_page;
    uint32_t segment_addr, stack_addr;

    bios_cfg_read_entry(&setup_addr, FW_CFG_SETUP_ADDR, 4);
    bios_cfg_read_entry(&setup_size, FW_CFG_SETUP_SIZE, 4);
    bios_cfg_read_entry(setup_addr, FW_CFG_SETUP_DATA, setup_size);

    set_es(setup_addr);

    /* For protocol < 0x203 we don't have initrd_max ... */
    if (readw_es(0x206) < 0x203) {
        /* ... so we assume initrd_max = 0x37ffffff. */
        writel_es(0x22c, 0x37ffffff);
    }

    bios_cfg_read_entry(&initrd_addr, FW_CFG_INITRD_ADDR, 4);
    bios_cfg_read_entry(&initrd_size, FW_CFG_INITRD_SIZE, 4);

    initrd_end_page = ((uint32_t)(initrd_addr + initrd_size) & -4096);
    max_allowed_page = (readl_es(0x22c) & -4096);

    if (initrd_end_page != 0 && max_allowed_page != 0 &&
        initrd_end_page != max_allowed_page) {
        /* Initrd at the end of memory. Compute better initrd address
         * based on e801 data
         */
        initrd_addr = (void *)((get_e801_addr() - initrd_size) & -4096);
        writel_es(0x218, (uint32_t)initrd_addr);

    }

    bios_cfg_read_entry(initrd_addr, FW_CFG_INITRD_DATA, initrd_size);

    bios_cfg_read_entry(&kernel_addr, FW_CFG_KERNEL_ADDR, 4);
    bios_cfg_read_entry(&kernel_size, FW_CFG_KERNEL_SIZE, 4);
    bios_cfg_read_entry(kernel_addr, FW_CFG_KERNEL_DATA, kernel_size);

    bios_cfg_read_entry(&cmdline_addr, FW_CFG_CMDLINE_ADDR, 4);
    bios_cfg_read_entry(&cmdline_size, FW_CFG_CMDLINE_SIZE, 4);
    bios_cfg_read_entry(cmdline_addr, FW_CFG_CMDLINE_DATA, cmdline_size);

    /* Boot linux */
    segment_addr = ((uint32_t)setup_addr >> 4);
    stack_addr = (uint32_t)(cmdline_addr - setup_addr - 16);

    /* As we are changing critical registers, we cannot leave freedom to the
     * compiler.
     */
    asm("movw %%ax, %%ds\n"
        "movw %%ax, %%es\n"
        "movw %%ax, %%fs\n"
        "movw %%ax, %%gs\n"
        "movw %%ax, %%ss\n"
        "movl %%ebx, %%esp\n"
        "addw $0x20, %%ax\n"
        "pushw %%ax\n" /* CS */
        "pushw $0\n" /* IP */
        /* Clear registers and jump to Linux */
        "xor %%ebx, %%ebx\n"
        "xor %%ecx, %%ecx\n"
        "xor %%edx, %%edx\n"
        "xor %%edi, %%edi\n"
        "xor %%ebp, %%ebp\n"
        "lretw\n"
        : : "a"(segment_addr), "b"(stack_addr));
}