aboutsummaryrefslogtreecommitdiff
path: root/migration-rdma.c
blob: 5b03e954c45bc339e83ef9b474b41f77c824acd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
/*
 * RDMA protocol and interfaces
 *
 * Copyright IBM, Corp. 2010-2013
 *
 * Authors:
 *  Michael R. Hines <mrhines@us.ibm.com>
 *  Jiuxing Liu <jl@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or
 * later.  See the COPYING file in the top-level directory.
 *
 */
#include "qemu-common.h"
#include "migration/migration.h"
#include "migration/qemu-file.h"
#include "exec/cpu-common.h"
#include "qemu/main-loop.h"
#include "qemu/sockets.h"
#include "qemu/bitmap.h"
#include "block/coroutine.h"
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <string.h>
#include <rdma/rdma_cma.h>

//#define DEBUG_RDMA
//#define DEBUG_RDMA_VERBOSE
//#define DEBUG_RDMA_REALLY_VERBOSE

#ifdef DEBUG_RDMA
#define DPRINTF(fmt, ...) \
    do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
    do { } while (0)
#endif

#ifdef DEBUG_RDMA_VERBOSE
#define DDPRINTF(fmt, ...) \
    do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DDPRINTF(fmt, ...) \
    do { } while (0)
#endif

#ifdef DEBUG_RDMA_REALLY_VERBOSE
#define DDDPRINTF(fmt, ...) \
    do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DDDPRINTF(fmt, ...) \
    do { } while (0)
#endif

/*
 * Print and error on both the Monitor and the Log file.
 */
#define ERROR(errp, fmt, ...) \
    do { \
        fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
        if (errp && (*(errp) == NULL)) { \
            error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
        } \
    } while (0)

#define RDMA_RESOLVE_TIMEOUT_MS 10000

/* Do not merge data if larger than this. */
#define RDMA_MERGE_MAX (2 * 1024 * 1024)
#define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)

#define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */

/*
 * This is only for non-live state being migrated.
 * Instead of RDMA_WRITE messages, we use RDMA_SEND
 * messages for that state, which requires a different
 * delivery design than main memory.
 */
#define RDMA_SEND_INCREMENT 32768

/*
 * Maximum size infiniband SEND message
 */
#define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
#define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096

#define RDMA_CONTROL_VERSION_CURRENT 1
/*
 * Capabilities for negotiation.
 */
#define RDMA_CAPABILITY_PIN_ALL 0x01

/*
 * Add the other flags above to this list of known capabilities
 * as they are introduced.
 */
static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;

#define CHECK_ERROR_STATE() \
    do { \
        if (rdma->error_state) { \
            if (!rdma->error_reported) { \
                fprintf(stderr, "RDMA is in an error state waiting migration" \
                                " to abort!\n"); \
                rdma->error_reported = 1; \
            } \
            return rdma->error_state; \
        } \
    } while (0);

/*
 * A work request ID is 64-bits and we split up these bits
 * into 3 parts:
 *
 * bits 0-15 : type of control message, 2^16
 * bits 16-29: ram block index, 2^14
 * bits 30-63: ram block chunk number, 2^34
 *
 * The last two bit ranges are only used for RDMA writes,
 * in order to track their completion and potentially
 * also track unregistration status of the message.
 */
#define RDMA_WRID_TYPE_SHIFT  0UL
#define RDMA_WRID_BLOCK_SHIFT 16UL
#define RDMA_WRID_CHUNK_SHIFT 30UL

#define RDMA_WRID_TYPE_MASK \
    ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)

#define RDMA_WRID_BLOCK_MASK \
    (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))

#define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)

/*
 * RDMA migration protocol:
 * 1. RDMA Writes (data messages, i.e. RAM)
 * 2. IB Send/Recv (control channel messages)
 */
enum {
    RDMA_WRID_NONE = 0,
    RDMA_WRID_RDMA_WRITE = 1,
    RDMA_WRID_SEND_CONTROL = 2000,
    RDMA_WRID_RECV_CONTROL = 4000,
};

const char *wrid_desc[] = {
    [RDMA_WRID_NONE] = "NONE",
    [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
    [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
    [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
};

/*
 * Work request IDs for IB SEND messages only (not RDMA writes).
 * This is used by the migration protocol to transmit
 * control messages (such as device state and registration commands)
 *
 * We could use more WRs, but we have enough for now.
 */
enum {
    RDMA_WRID_READY = 0,
    RDMA_WRID_DATA,
    RDMA_WRID_CONTROL,
    RDMA_WRID_MAX,
};

/*
 * SEND/RECV IB Control Messages.
 */
enum {
    RDMA_CONTROL_NONE = 0,
    RDMA_CONTROL_ERROR,
    RDMA_CONTROL_READY,               /* ready to receive */
    RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
    RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
    RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
    RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
    RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
    RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
    RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
    RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
    RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
};

const char *control_desc[] = {
    [RDMA_CONTROL_NONE] = "NONE",
    [RDMA_CONTROL_ERROR] = "ERROR",
    [RDMA_CONTROL_READY] = "READY",
    [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
    [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
    [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
    [RDMA_CONTROL_COMPRESS] = "COMPRESS",
    [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
    [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
    [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
    [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
    [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
};

/*
 * Memory and MR structures used to represent an IB Send/Recv work request.
 * This is *not* used for RDMA writes, only IB Send/Recv.
 */
typedef struct {
    uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
    struct   ibv_mr *control_mr;               /* registration metadata */
    size_t   control_len;                      /* length of the message */
    uint8_t *control_curr;                     /* start of unconsumed bytes */
} RDMAWorkRequestData;

/*
 * Negotiate RDMA capabilities during connection-setup time.
 */
typedef struct {
    uint32_t version;
    uint32_t flags;
} RDMACapabilities;

static void caps_to_network(RDMACapabilities *cap)
{
    cap->version = htonl(cap->version);
    cap->flags = htonl(cap->flags);
}

static void network_to_caps(RDMACapabilities *cap)
{
    cap->version = ntohl(cap->version);
    cap->flags = ntohl(cap->flags);
}

/*
 * Representation of a RAMBlock from an RDMA perspective.
 * This is not transmitted, only local.
 * This and subsequent structures cannot be linked lists
 * because we're using a single IB message to transmit
 * the information. It's small anyway, so a list is overkill.
 */
typedef struct RDMALocalBlock {
    uint8_t  *local_host_addr; /* local virtual address */
    uint64_t remote_host_addr; /* remote virtual address */
    uint64_t offset;
    uint64_t length;
    struct   ibv_mr **pmr;     /* MRs for chunk-level registration */
    struct   ibv_mr *mr;       /* MR for non-chunk-level registration */
    uint32_t *remote_keys;     /* rkeys for chunk-level registration */
    uint32_t remote_rkey;      /* rkeys for non-chunk-level registration */
    int      index;            /* which block are we */
    bool     is_ram_block;
    int      nb_chunks;
    unsigned long *transit_bitmap;
    unsigned long *unregister_bitmap;
} RDMALocalBlock;

/*
 * Also represents a RAMblock, but only on the dest.
 * This gets transmitted by the dest during connection-time
 * to the source VM and then is used to populate the
 * corresponding RDMALocalBlock with
 * the information needed to perform the actual RDMA.
 */
typedef struct QEMU_PACKED RDMARemoteBlock {
    uint64_t remote_host_addr;
    uint64_t offset;
    uint64_t length;
    uint32_t remote_rkey;
    uint32_t padding;
} RDMARemoteBlock;

static uint64_t htonll(uint64_t v)
{
    union { uint32_t lv[2]; uint64_t llv; } u;
    u.lv[0] = htonl(v >> 32);
    u.lv[1] = htonl(v & 0xFFFFFFFFULL);
    return u.llv;
}

static uint64_t ntohll(uint64_t v) {
    union { uint32_t lv[2]; uint64_t llv; } u;
    u.llv = v;
    return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
}

static void remote_block_to_network(RDMARemoteBlock *rb)
{
    rb->remote_host_addr = htonll(rb->remote_host_addr);
    rb->offset = htonll(rb->offset);
    rb->length = htonll(rb->length);
    rb->remote_rkey = htonl(rb->remote_rkey);
}

static void network_to_remote_block(RDMARemoteBlock *rb)
{
    rb->remote_host_addr = ntohll(rb->remote_host_addr);
    rb->offset = ntohll(rb->offset);
    rb->length = ntohll(rb->length);
    rb->remote_rkey = ntohl(rb->remote_rkey);
}

/*
 * Virtual address of the above structures used for transmitting
 * the RAMBlock descriptions at connection-time.
 * This structure is *not* transmitted.
 */
typedef struct RDMALocalBlocks {
    int nb_blocks;
    bool     init;             /* main memory init complete */
    RDMALocalBlock *block;
} RDMALocalBlocks;

/*
 * Main data structure for RDMA state.
 * While there is only one copy of this structure being allocated right now,
 * this is the place where one would start if you wanted to consider
 * having more than one RDMA connection open at the same time.
 */
typedef struct RDMAContext {
    char *host;
    int port;

    RDMAWorkRequestData wr_data[RDMA_WRID_MAX];

    /*
     * This is used by *_exchange_send() to figure out whether or not
     * the initial "READY" message has already been received or not.
     * This is because other functions may potentially poll() and detect
     * the READY message before send() does, in which case we need to
     * know if it completed.
     */
    int control_ready_expected;

    /* number of outstanding writes */
    int nb_sent;

    /* store info about current buffer so that we can
       merge it with future sends */
    uint64_t current_addr;
    uint64_t current_length;
    /* index of ram block the current buffer belongs to */
    int current_index;
    /* index of the chunk in the current ram block */
    int current_chunk;

    bool pin_all;

    /*
     * infiniband-specific variables for opening the device
     * and maintaining connection state and so forth.
     *
     * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
     * cm_id->verbs, cm_id->channel, and cm_id->qp.
     */
    struct rdma_cm_id *cm_id;               /* connection manager ID */
    struct rdma_cm_id *listen_id;

    struct ibv_context          *verbs;
    struct rdma_event_channel   *channel;
    struct ibv_qp *qp;                      /* queue pair */
    struct ibv_comp_channel *comp_channel;  /* completion channel */
    struct ibv_pd *pd;                      /* protection domain */
    struct ibv_cq *cq;                      /* completion queue */

    /*
     * If a previous write failed (perhaps because of a failed
     * memory registration, then do not attempt any future work
     * and remember the error state.
     */
    int error_state;
    int error_reported;

    /*
     * Description of ram blocks used throughout the code.
     */
    RDMALocalBlocks local_ram_blocks;
    RDMARemoteBlock *block;

    /*
     * Migration on *destination* started.
     * Then use coroutine yield function.
     * Source runs in a thread, so we don't care.
     */
    int migration_started_on_destination;

    int total_registrations;
    int total_writes;

    int unregister_current, unregister_next;
    uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];

    GHashTable *blockmap;
    bool ipv6;
} RDMAContext;

/*
 * Interface to the rest of the migration call stack.
 */
typedef struct QEMUFileRDMA {
    RDMAContext *rdma;
    size_t len;
    void *file;
} QEMUFileRDMA;

/*
 * Main structure for IB Send/Recv control messages.
 * This gets prepended at the beginning of every Send/Recv.
 */
typedef struct QEMU_PACKED {
    uint32_t len;     /* Total length of data portion */
    uint32_t type;    /* which control command to perform */
    uint32_t repeat;  /* number of commands in data portion of same type */
    uint32_t padding;
} RDMAControlHeader;

static void control_to_network(RDMAControlHeader *control)
{
    control->type = htonl(control->type);
    control->len = htonl(control->len);
    control->repeat = htonl(control->repeat);
}

static void network_to_control(RDMAControlHeader *control)
{
    control->type = ntohl(control->type);
    control->len = ntohl(control->len);
    control->repeat = ntohl(control->repeat);
}

/*
 * Register a single Chunk.
 * Information sent by the source VM to inform the dest
 * to register an single chunk of memory before we can perform
 * the actual RDMA operation.
 */
typedef struct QEMU_PACKED {
    union QEMU_PACKED {
        uint64_t current_addr;  /* offset into the ramblock of the chunk */
        uint64_t chunk;         /* chunk to lookup if unregistering */
    } key;
    uint32_t current_index; /* which ramblock the chunk belongs to */
    uint32_t padding;
    uint64_t chunks;            /* how many sequential chunks to register */
} RDMARegister;

static void register_to_network(RDMARegister *reg)
{
    reg->key.current_addr = htonll(reg->key.current_addr);
    reg->current_index = htonl(reg->current_index);
    reg->chunks = htonll(reg->chunks);
}

static void network_to_register(RDMARegister *reg)
{
    reg->key.current_addr = ntohll(reg->key.current_addr);
    reg->current_index = ntohl(reg->current_index);
    reg->chunks = ntohll(reg->chunks);
}

typedef struct QEMU_PACKED {
    uint32_t value;     /* if zero, we will madvise() */
    uint32_t block_idx; /* which ram block index */
    uint64_t offset;    /* where in the remote ramblock this chunk */
    uint64_t length;    /* length of the chunk */
} RDMACompress;

static void compress_to_network(RDMACompress *comp)
{
    comp->value = htonl(comp->value);
    comp->block_idx = htonl(comp->block_idx);
    comp->offset = htonll(comp->offset);
    comp->length = htonll(comp->length);
}

static void network_to_compress(RDMACompress *comp)
{
    comp->value = ntohl(comp->value);
    comp->block_idx = ntohl(comp->block_idx);
    comp->offset = ntohll(comp->offset);
    comp->length = ntohll(comp->length);
}

/*
 * The result of the dest's memory registration produces an "rkey"
 * which the source VM must reference in order to perform
 * the RDMA operation.
 */
typedef struct QEMU_PACKED {
    uint32_t rkey;
    uint32_t padding;
    uint64_t host_addr;
} RDMARegisterResult;

static void result_to_network(RDMARegisterResult *result)
{
    result->rkey = htonl(result->rkey);
    result->host_addr = htonll(result->host_addr);
};

static void network_to_result(RDMARegisterResult *result)
{
    result->rkey = ntohl(result->rkey);
    result->host_addr = ntohll(result->host_addr);
};

const char *print_wrid(int wrid);
static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
                                   uint8_t *data, RDMAControlHeader *resp,
                                   int *resp_idx,
                                   int (*callback)(RDMAContext *rdma));

static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
{
    return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
}

static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
                                       uint64_t i)
{
    return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
                                    + (i << RDMA_REG_CHUNK_SHIFT));
}

static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
{
    uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
                                         (1UL << RDMA_REG_CHUNK_SHIFT);

    if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
        result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
    }

    return result;
}

static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
                         ram_addr_t block_offset, uint64_t length)
{
    RDMALocalBlocks *local = &rdma->local_ram_blocks;
    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
        (void *) block_offset);
    RDMALocalBlock *old = local->block;

    assert(block == NULL);

    local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));

    if (local->nb_blocks) {
        int x;

        for (x = 0; x < local->nb_blocks; x++) {
            g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
            g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
                                                &local->block[x]);
        }
        memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
        g_free(old);
    }

    block = &local->block[local->nb_blocks];

    block->local_host_addr = host_addr;
    block->offset = block_offset;
    block->length = length;
    block->index = local->nb_blocks;
    block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
    block->transit_bitmap = bitmap_new(block->nb_chunks);
    bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
    block->unregister_bitmap = bitmap_new(block->nb_chunks);
    bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
    block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));

    block->is_ram_block = local->init ? false : true;

    g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);

    DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
           " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
            local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
            block->length, (uint64_t) (block->local_host_addr + block->length),
                BITS_TO_LONGS(block->nb_chunks) *
                    sizeof(unsigned long) * 8, block->nb_chunks);

    local->nb_blocks++;

    return 0;
}

/*
 * Memory regions need to be registered with the device and queue pairs setup
 * in advanced before the migration starts. This tells us where the RAM blocks
 * are so that we can register them individually.
 */
static void qemu_rdma_init_one_block(void *host_addr,
    ram_addr_t block_offset, ram_addr_t length, void *opaque)
{
    __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
}

/*
 * Identify the RAMBlocks and their quantity. They will be references to
 * identify chunk boundaries inside each RAMBlock and also be referenced
 * during dynamic page registration.
 */
static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
{
    RDMALocalBlocks *local = &rdma->local_ram_blocks;

    assert(rdma->blockmap == NULL);
    rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
    memset(local, 0, sizeof *local);
    qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
    DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
    rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
                        rdma->local_ram_blocks.nb_blocks);
    local->init = true;
    return 0;
}

static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
{
    RDMALocalBlocks *local = &rdma->local_ram_blocks;
    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
        (void *) block_offset);
    RDMALocalBlock *old = local->block;
    int x;

    assert(block);

    if (block->pmr) {
        int j;

        for (j = 0; j < block->nb_chunks; j++) {
            if (!block->pmr[j]) {
                continue;
            }
            ibv_dereg_mr(block->pmr[j]);
            rdma->total_registrations--;
        }
        g_free(block->pmr);
        block->pmr = NULL;
    }

    if (block->mr) {
        ibv_dereg_mr(block->mr);
        rdma->total_registrations--;
        block->mr = NULL;
    }

    g_free(block->transit_bitmap);
    block->transit_bitmap = NULL;

    g_free(block->unregister_bitmap);
    block->unregister_bitmap = NULL;

    g_free(block->remote_keys);
    block->remote_keys = NULL;

    for (x = 0; x < local->nb_blocks; x++) {
        g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
    }

    if (local->nb_blocks > 1) {

        local->block = g_malloc0(sizeof(RDMALocalBlock) *
                                    (local->nb_blocks - 1));

        if (block->index) {
            memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
        }

        if (block->index < (local->nb_blocks - 1)) {
            memcpy(local->block + block->index, old + (block->index + 1),
                sizeof(RDMALocalBlock) *
                    (local->nb_blocks - (block->index + 1)));
        }
    } else {
        assert(block == local->block);
        local->block = NULL;
    }

    DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
           " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
            local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
            block->length, (uint64_t) (block->local_host_addr + block->length),
                BITS_TO_LONGS(block->nb_chunks) *
                    sizeof(unsigned long) * 8, block->nb_chunks);

    g_free(old);

    local->nb_blocks--;

    if (local->nb_blocks) {
        for (x = 0; x < local->nb_blocks; x++) {
            g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
                                                &local->block[x]);
        }
    }

    return 0;
}

/*
 * Put in the log file which RDMA device was opened and the details
 * associated with that device.
 */
static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
{
    printf("%s RDMA Device opened: kernel name %s "
           "uverbs device name %s, "
           "infiniband_verbs class device path %s,"
           " infiniband class device path %s\n",
                who,
                verbs->device->name,
                verbs->device->dev_name,
                verbs->device->dev_path,
                verbs->device->ibdev_path);
}

/*
 * Put in the log file the RDMA gid addressing information,
 * useful for folks who have trouble understanding the
 * RDMA device hierarchy in the kernel.
 */
static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
{
    char sgid[33];
    char dgid[33];
    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
    DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
}

/*
 * Figure out which RDMA device corresponds to the requested IP hostname
 * Also create the initial connection manager identifiers for opening
 * the connection.
 */
static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
{
    int ret;
    struct addrinfo *res;
    char port_str[16];
    struct rdma_cm_event *cm_event;
    char ip[40] = "unknown";
    int af = rdma->ipv6 ? PF_INET6 : PF_INET;

    if (rdma->host == NULL || !strcmp(rdma->host, "")) {
        ERROR(errp, "RDMA hostname has not been set");
        return -1;
    }

    /* create CM channel */
    rdma->channel = rdma_create_event_channel();
    if (!rdma->channel) {
        ERROR(errp, "could not create CM channel");
        return -1;
    }

    /* create CM id */
    ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
    if (ret) {
        ERROR(errp, "could not create channel id");
        goto err_resolve_create_id;
    }

    snprintf(port_str, 16, "%d", rdma->port);
    port_str[15] = '\0';

    ret = getaddrinfo(rdma->host, port_str, NULL, &res);
    if (ret < 0) {
        ERROR(errp, "could not getaddrinfo address %s", rdma->host);
        goto err_resolve_get_addr;
    }

    inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
                                ip, sizeof ip);
    DPRINTF("%s => %s\n", rdma->host, ip);

    /* resolve the first address */
    ret = rdma_resolve_addr(rdma->cm_id, NULL, res->ai_addr,
            RDMA_RESOLVE_TIMEOUT_MS);
    if (ret) {
        ERROR(errp, "could not resolve address %s", rdma->host);
        goto err_resolve_get_addr;
    }

    qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);

    ret = rdma_get_cm_event(rdma->channel, &cm_event);
    if (ret) {
        ERROR(errp, "could not perform event_addr_resolved");
        goto err_resolve_get_addr;
    }

    if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
        ERROR(errp, "result not equal to event_addr_resolved %s",
                rdma_event_str(cm_event->event));
        perror("rdma_resolve_addr");
        goto err_resolve_get_addr;
    }
    rdma_ack_cm_event(cm_event);

    /* resolve route */
    ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
    if (ret) {
        ERROR(errp, "could not resolve rdma route");
        goto err_resolve_get_addr;
    }

    ret = rdma_get_cm_event(rdma->channel, &cm_event);
    if (ret) {
        ERROR(errp, "could not perform event_route_resolved");
        goto err_resolve_get_addr;
    }
    if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
        ERROR(errp, "result not equal to event_route_resolved: %s",
                        rdma_event_str(cm_event->event));
        rdma_ack_cm_event(cm_event);
        goto err_resolve_get_addr;
    }
    rdma_ack_cm_event(cm_event);
    rdma->verbs = rdma->cm_id->verbs;
    qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
    qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
    return 0;

err_resolve_get_addr:
    rdma_destroy_id(rdma->cm_id);
    rdma->cm_id = NULL;
err_resolve_create_id:
    rdma_destroy_event_channel(rdma->channel);
    rdma->channel = NULL;

    return -1;
}

/*
 * Create protection domain and completion queues
 */
static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
{
    /* allocate pd */
    rdma->pd = ibv_alloc_pd(rdma->verbs);
    if (!rdma->pd) {
        fprintf(stderr, "failed to allocate protection domain\n");
        return -1;
    }

    /* create completion channel */
    rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
    if (!rdma->comp_channel) {
        fprintf(stderr, "failed to allocate completion channel\n");
        goto err_alloc_pd_cq;
    }

    /*
     * Completion queue can be filled by both read and write work requests,
     * so must reflect the sum of both possible queue sizes.
     */
    rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
            NULL, rdma->comp_channel, 0);
    if (!rdma->cq) {
        fprintf(stderr, "failed to allocate completion queue\n");
        goto err_alloc_pd_cq;
    }

    return 0;

err_alloc_pd_cq:
    if (rdma->pd) {
        ibv_dealloc_pd(rdma->pd);
    }
    if (rdma->comp_channel) {
        ibv_destroy_comp_channel(rdma->comp_channel);
    }
    rdma->pd = NULL;
    rdma->comp_channel = NULL;
    return -1;

}

/*
 * Create queue pairs.
 */
static int qemu_rdma_alloc_qp(RDMAContext *rdma)
{
    struct ibv_qp_init_attr attr = { 0 };
    int ret;

    attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
    attr.cap.max_recv_wr = 3;
    attr.cap.max_send_sge = 1;
    attr.cap.max_recv_sge = 1;
    attr.send_cq = rdma->cq;
    attr.recv_cq = rdma->cq;
    attr.qp_type = IBV_QPT_RC;

    ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
    if (ret) {
        return -1;
    }

    rdma->qp = rdma->cm_id->qp;
    return 0;
}

static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
{
    int i;
    RDMALocalBlocks *local = &rdma->local_ram_blocks;

    for (i = 0; i < local->nb_blocks; i++) {
        local->block[i].mr =
            ibv_reg_mr(rdma->pd,
                    local->block[i].local_host_addr,
                    local->block[i].length,
                    IBV_ACCESS_LOCAL_WRITE |
                    IBV_ACCESS_REMOTE_WRITE
                    );
        if (!local->block[i].mr) {
            perror("Failed to register local dest ram block!\n");
            break;
        }
        rdma->total_registrations++;
    }

    if (i >= local->nb_blocks) {
        return 0;
    }

    for (i--; i >= 0; i--) {
        ibv_dereg_mr(local->block[i].mr);
        rdma->total_registrations--;
    }

    return -1;

}

/*
 * Find the ram block that corresponds to the page requested to be
 * transmitted by QEMU.
 *
 * Once the block is found, also identify which 'chunk' within that
 * block that the page belongs to.
 *
 * This search cannot fail or the migration will fail.
 */
static int qemu_rdma_search_ram_block(RDMAContext *rdma,
                                      uint64_t block_offset,
                                      uint64_t offset,
                                      uint64_t length,
                                      uint64_t *block_index,
                                      uint64_t *chunk_index)
{
    uint64_t current_addr = block_offset + offset;
    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
                                                (void *) block_offset);
    assert(block);
    assert(current_addr >= block->offset);
    assert((current_addr + length) <= (block->offset + block->length));

    *block_index = block->index;
    *chunk_index = ram_chunk_index(block->local_host_addr,
                block->local_host_addr + (current_addr - block->offset));

    return 0;
}

/*
 * Register a chunk with IB. If the chunk was already registered
 * previously, then skip.
 *
 * Also return the keys associated with the registration needed
 * to perform the actual RDMA operation.
 */
static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
        RDMALocalBlock *block, uint8_t *host_addr,
        uint32_t *lkey, uint32_t *rkey, int chunk,
        uint8_t *chunk_start, uint8_t *chunk_end)
{
    if (block->mr) {
        if (lkey) {
            *lkey = block->mr->lkey;
        }
        if (rkey) {
            *rkey = block->mr->rkey;
        }
        return 0;
    }

    /* allocate memory to store chunk MRs */
    if (!block->pmr) {
        block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
        if (!block->pmr) {
            return -1;
        }
    }

    /*
     * If 'rkey', then we're the destination, so grant access to the source.
     *
     * If 'lkey', then we're the source VM, so grant access only to ourselves.
     */
    if (!block->pmr[chunk]) {
        uint64_t len = chunk_end - chunk_start;

        DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
                 len, chunk_start);

        block->pmr[chunk] = ibv_reg_mr(rdma->pd,
                chunk_start, len,
                (rkey ? (IBV_ACCESS_LOCAL_WRITE |
                        IBV_ACCESS_REMOTE_WRITE) : 0));

        if (!block->pmr[chunk]) {
            perror("Failed to register chunk!");
            fprintf(stderr, "Chunk details: block: %d chunk index %d"
                            " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
                            " local %" PRIu64 " registrations: %d\n",
                            block->index, chunk, (uint64_t) chunk_start,
                            (uint64_t) chunk_end, (uint64_t) host_addr,
                            (uint64_t) block->local_host_addr,
                            rdma->total_registrations);
            return -1;
        }
        rdma->total_registrations++;
    }

    if (lkey) {
        *lkey = block->pmr[chunk]->lkey;
    }
    if (rkey) {
        *rkey = block->pmr[chunk]->rkey;
    }
    return 0;
}

/*
 * Register (at connection time) the memory used for control
 * channel messages.
 */
static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
{
    rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
            rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
            IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
    if (rdma->wr_data[idx].control_mr) {
        rdma->total_registrations++;
        return 0;
    }
    fprintf(stderr, "qemu_rdma_reg_control failed!\n");
    return -1;
}

const char *print_wrid(int wrid)
{
    if (wrid >= RDMA_WRID_RECV_CONTROL) {
        return wrid_desc[RDMA_WRID_RECV_CONTROL];
    }
    return wrid_desc[wrid];
}

/*
 * RDMA requires memory registration (mlock/pinning), but this is not good for
 * overcommitment.
 *
 * In preparation for the future where LRU information or workload-specific
 * writable writable working set memory access behavior is available to QEMU
 * it would be nice to have in place the ability to UN-register/UN-pin
 * particular memory regions from the RDMA hardware when it is determine that
 * those regions of memory will likely not be accessed again in the near future.
 *
 * While we do not yet have such information right now, the following
 * compile-time option allows us to perform a non-optimized version of this
 * behavior.
 *
 * By uncommenting this option, you will cause *all* RDMA transfers to be
 * unregistered immediately after the transfer completes on both sides of the
 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
 *
 * This will have a terrible impact on migration performance, so until future
 * workload information or LRU information is available, do not attempt to use
 * this feature except for basic testing.
 */
//#define RDMA_UNREGISTRATION_EXAMPLE

/*
 * Perform a non-optimized memory unregistration after every transfer
 * for demonsration purposes, only if pin-all is not requested.
 *
 * Potential optimizations:
 * 1. Start a new thread to run this function continuously
        - for bit clearing
        - and for receipt of unregister messages
 * 2. Use an LRU.
 * 3. Use workload hints.
 */
static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
{
    while (rdma->unregistrations[rdma->unregister_current]) {
        int ret;
        uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
        uint64_t chunk =
            (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
        uint64_t index =
            (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
        RDMALocalBlock *block =
            &(rdma->local_ram_blocks.block[index]);
        RDMARegister reg = { .current_index = index };
        RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
                                 };
        RDMAControlHeader head = { .len = sizeof(RDMARegister),
                                   .type = RDMA_CONTROL_UNREGISTER_REQUEST,
                                   .repeat = 1,
                                 };

        DDPRINTF("Processing unregister for chunk: %" PRIu64
                 " at position %d\n", chunk, rdma->unregister_current);

        rdma->unregistrations[rdma->unregister_current] = 0;
        rdma->unregister_current++;

        if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
            rdma->unregister_current = 0;
        }


        /*
         * Unregistration is speculative (because migration is single-threaded
         * and we cannot break the protocol's inifinband message ordering).
         * Thus, if the memory is currently being used for transmission,
         * then abort the attempt to unregister and try again
         * later the next time a completion is received for this memory.
         */
        clear_bit(chunk, block->unregister_bitmap);

        if (test_bit(chunk, block->transit_bitmap)) {
            DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
            continue;
        }

        DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);

        ret = ibv_dereg_mr(block->pmr[chunk]);
        block->pmr[chunk] = NULL;
        block->remote_keys[chunk] = 0;

        if (ret != 0) {
            perror("unregistration chunk failed");
            return -ret;
        }
        rdma->total_registrations--;

        reg.key.chunk = chunk;
        register_to_network(&reg);
        ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
                                &resp, NULL, NULL);
        if (ret < 0) {
            return ret;
        }

        DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
    }

    return 0;
}

static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
                                         uint64_t chunk)
{
    uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;

    result |= (index << RDMA_WRID_BLOCK_SHIFT);
    result |= (chunk << RDMA_WRID_CHUNK_SHIFT);

    return result;
}

/*
 * Set bit for unregistration in the next iteration.
 * We cannot transmit right here, but will unpin later.
 */
static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
                                        uint64_t chunk, uint64_t wr_id)
{
    if (rdma->unregistrations[rdma->unregister_next] != 0) {
        fprintf(stderr, "rdma migration: queue is full!\n");
    } else {
        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);

        if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
            DDPRINTF("Appending unregister chunk %" PRIu64
                    " at position %d\n", chunk, rdma->unregister_next);

            rdma->unregistrations[rdma->unregister_next++] =
                    qemu_rdma_make_wrid(wr_id, index, chunk);

            if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
                rdma->unregister_next = 0;
            }
        } else {
            DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
                    chunk);
        }
    }
}

/*
 * Consult the connection manager to see a work request
 * (of any kind) has completed.
 * Return the work request ID that completed.
 */
static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out)
{
    int ret;
    struct ibv_wc wc;
    uint64_t wr_id;

    ret = ibv_poll_cq(rdma->cq, 1, &wc);

    if (!ret) {
        *wr_id_out = RDMA_WRID_NONE;
        return 0;
    }

    if (ret < 0) {
        fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
        return ret;
    }

    wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;

    if (wc.status != IBV_WC_SUCCESS) {
        fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
                        wc.status, ibv_wc_status_str(wc.status));
        fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);

        return -1;
    }

    if (rdma->control_ready_expected &&
        (wr_id >= RDMA_WRID_RECV_CONTROL)) {
        DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
                  " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
                  wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
        rdma->control_ready_expected = 0;
    }

    if (wr_id == RDMA_WRID_RDMA_WRITE) {
        uint64_t chunk =
            (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
        uint64_t index =
            (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);

        DDDPRINTF("completions %s (%" PRId64 ") left %d, "
                 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
                 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
                 block->local_host_addr, (void *)block->remote_host_addr);

        clear_bit(chunk, block->transit_bitmap);

        if (rdma->nb_sent > 0) {
            rdma->nb_sent--;
        }

        if (!rdma->pin_all) {
            /*
             * FYI: If one wanted to signal a specific chunk to be unregistered
             * using LRU or workload-specific information, this is the function
             * you would call to do so. That chunk would then get asynchronously
             * unregistered later.
             */
#ifdef RDMA_UNREGISTRATION_EXAMPLE
            qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
#endif
        }
    } else {
        DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
            print_wrid(wr_id), wr_id, rdma->nb_sent);
    }

    *wr_id_out = wc.wr_id;

    return  0;
}

/*
 * Block until the next work request has completed.
 *
 * First poll to see if a work request has already completed,
 * otherwise block.
 *
 * If we encounter completed work requests for IDs other than
 * the one we're interested in, then that's generally an error.
 *
 * The only exception is actual RDMA Write completions. These
 * completions only need to be recorded, but do not actually
 * need further processing.
 */
static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested)
{
    int num_cq_events = 0, ret = 0;
    struct ibv_cq *cq;
    void *cq_ctx;
    uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;

    if (ibv_req_notify_cq(rdma->cq, 0)) {
        return -1;
    }
    /* poll cq first */
    while (wr_id != wrid_requested) {
        ret = qemu_rdma_poll(rdma, &wr_id_in);
        if (ret < 0) {
            return ret;
        }

        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;

        if (wr_id == RDMA_WRID_NONE) {
            break;
        }
        if (wr_id != wrid_requested) {
            DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
                print_wrid(wrid_requested),
                wrid_requested, print_wrid(wr_id), wr_id);
        }
    }

    if (wr_id == wrid_requested) {
        return 0;
    }

    while (1) {
        /*
         * Coroutine doesn't start until process_incoming_migration()
         * so don't yield unless we know we're running inside of a coroutine.
         */
        if (rdma->migration_started_on_destination) {
            yield_until_fd_readable(rdma->comp_channel->fd);
        }

        if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
            perror("ibv_get_cq_event");
            goto err_block_for_wrid;
        }

        num_cq_events++;

        if (ibv_req_notify_cq(cq, 0)) {
            goto err_block_for_wrid;
        }

        while (wr_id != wrid_requested) {
            ret = qemu_rdma_poll(rdma, &wr_id_in);
            if (ret < 0) {
                goto err_block_for_wrid;
            }

            wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;

            if (wr_id == RDMA_WRID_NONE) {
                break;
            }
            if (wr_id != wrid_requested) {
                DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
                    print_wrid(wrid_requested), wrid_requested,
                    print_wrid(wr_id), wr_id);
            }
        }

        if (wr_id == wrid_requested) {
            goto success_block_for_wrid;
        }
    }

success_block_for_wrid:
    if (num_cq_events) {
        ibv_ack_cq_events(cq, num_cq_events);
    }
    return 0;

err_block_for_wrid:
    if (num_cq_events) {
        ibv_ack_cq_events(cq, num_cq_events);
    }
    return ret;
}

/*
 * Post a SEND message work request for the control channel
 * containing some data and block until the post completes.
 */
static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
                                       RDMAControlHeader *head)
{
    int ret = 0;
    RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
    struct ibv_send_wr *bad_wr;
    struct ibv_sge sge = {
                           .addr = (uint64_t)(wr->control),
                           .length = head->len + sizeof(RDMAControlHeader),
                           .lkey = wr->control_mr->lkey,
                         };
    struct ibv_send_wr send_wr = {
                                   .wr_id = RDMA_WRID_SEND_CONTROL,
                                   .opcode = IBV_WR_SEND,
                                   .send_flags = IBV_SEND_SIGNALED,
                                   .sg_list = &sge,
                                   .num_sge = 1,
                                };

    DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);

    /*
     * We don't actually need to do a memcpy() in here if we used
     * the "sge" properly, but since we're only sending control messages
     * (not RAM in a performance-critical path), then its OK for now.
     *
     * The copy makes the RDMAControlHeader simpler to manipulate
     * for the time being.
     */
    memcpy(wr->control, head, sizeof(RDMAControlHeader));
    control_to_network((void *) wr->control);

    if (buf) {
        memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
    }


    if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
        return -1;
    }

    if (ret < 0) {
        fprintf(stderr, "Failed to use post IB SEND for control!\n");
        return ret;
    }

    ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL);
    if (ret < 0) {
        fprintf(stderr, "rdma migration: send polling control error!\n");
    }

    return ret;
}

/*
 * Post a RECV work request in anticipation of some future receipt
 * of data on the control channel.
 */
static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
{
    struct ibv_recv_wr *bad_wr;
    struct ibv_sge sge = {
                            .addr = (uint64_t)(rdma->wr_data[idx].control),
                            .length = RDMA_CONTROL_MAX_BUFFER,
                            .lkey = rdma->wr_data[idx].control_mr->lkey,
                         };

    struct ibv_recv_wr recv_wr = {
                                    .wr_id = RDMA_WRID_RECV_CONTROL + idx,
                                    .sg_list = &sge,
                                    .num_sge = 1,
                                 };


    if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
        return -1;
    }

    return 0;
}

/*
 * Block and wait for a RECV control channel message to arrive.
 */
static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
                RDMAControlHeader *head, int expecting, int idx)
{
    int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx);

    if (ret < 0) {
        fprintf(stderr, "rdma migration: recv polling control error!\n");
        return ret;
    }

    network_to_control((void *) rdma->wr_data[idx].control);
    memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));

    DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);

    if (expecting == RDMA_CONTROL_NONE) {
        DDDPRINTF("Surprise: got %s (%d)\n",
                  control_desc[head->type], head->type);
    } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
        fprintf(stderr, "Was expecting a %s (%d) control message"
                ", but got: %s (%d), length: %d\n",
                control_desc[expecting], expecting,
                control_desc[head->type], head->type, head->len);
        return -EIO;
    }

    return 0;
}

/*
 * When a RECV work request has completed, the work request's
 * buffer is pointed at the header.
 *
 * This will advance the pointer to the data portion
 * of the control message of the work request's buffer that
 * was populated after the work request finished.
 */
static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
                                  RDMAControlHeader *head)
{
    rdma->wr_data[idx].control_len = head->len;
    rdma->wr_data[idx].control_curr =
        rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
}

/*
 * This is an 'atomic' high-level operation to deliver a single, unified
 * control-channel message.
 *
 * Additionally, if the user is expecting some kind of reply to this message,
 * they can request a 'resp' response message be filled in by posting an
 * additional work request on behalf of the user and waiting for an additional
 * completion.
 *
 * The extra (optional) response is used during registration to us from having
 * to perform an *additional* exchange of message just to provide a response by
 * instead piggy-backing on the acknowledgement.
 */
static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
                                   uint8_t *data, RDMAControlHeader *resp,
                                   int *resp_idx,
                                   int (*callback)(RDMAContext *rdma))
{
    int ret = 0;

    /*
     * Wait until the dest is ready before attempting to deliver the message
     * by waiting for a READY message.
     */
    if (rdma->control_ready_expected) {
        RDMAControlHeader resp;
        ret = qemu_rdma_exchange_get_response(rdma,
                                    &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
        if (ret < 0) {
            return ret;
        }
    }

    /*
     * If the user is expecting a response, post a WR in anticipation of it.
     */
    if (resp) {
        ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
        if (ret) {
            fprintf(stderr, "rdma migration: error posting"
                    " extra control recv for anticipated result!");
            return ret;
        }
    }

    /*
     * Post a WR to replace the one we just consumed for the READY message.
     */
    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
    if (ret) {
        fprintf(stderr, "rdma migration: error posting first control recv!");
        return ret;
    }

    /*
     * Deliver the control message that was requested.
     */
    ret = qemu_rdma_post_send_control(rdma, data, head);

    if (ret < 0) {
        fprintf(stderr, "Failed to send control buffer!\n");
        return ret;
    }

    /*
     * If we're expecting a response, block and wait for it.
     */
    if (resp) {
        if (callback) {
            DDPRINTF("Issuing callback before receiving response...\n");
            ret = callback(rdma);
            if (ret < 0) {
                return ret;
            }
        }

        DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
        ret = qemu_rdma_exchange_get_response(rdma, resp,
                                              resp->type, RDMA_WRID_DATA);

        if (ret < 0) {
            return ret;
        }

        qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
        if (resp_idx) {
            *resp_idx = RDMA_WRID_DATA;
        }
        DDPRINTF("Response %s received.\n", control_desc[resp->type]);
    }

    rdma->control_ready_expected = 1;

    return 0;
}

/*
 * This is an 'atomic' high-level operation to receive a single, unified
 * control-channel message.
 */
static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
                                int expecting)
{
    RDMAControlHeader ready = {
                                .len = 0,
                                .type = RDMA_CONTROL_READY,
                                .repeat = 1,
                              };
    int ret;

    /*
     * Inform the source that we're ready to receive a message.
     */
    ret = qemu_rdma_post_send_control(rdma, NULL, &ready);

    if (ret < 0) {
        fprintf(stderr, "Failed to send control buffer!\n");
        return ret;
    }

    /*
     * Block and wait for the message.
     */
    ret = qemu_rdma_exchange_get_response(rdma, head,
                                          expecting, RDMA_WRID_READY);

    if (ret < 0) {
        return ret;
    }

    qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);

    /*
     * Post a new RECV work request to replace the one we just consumed.
     */
    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
    if (ret) {
        fprintf(stderr, "rdma migration: error posting second control recv!");
        return ret;
    }

    return 0;
}

/*
 * Write an actual chunk of memory using RDMA.
 *
 * If we're using dynamic registration on the dest-side, we have to
 * send a registration command first.
 */
static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
                               int current_index, uint64_t current_addr,
                               uint64_t length)
{
    struct ibv_sge sge;
    struct ibv_send_wr send_wr = { 0 };
    struct ibv_send_wr *bad_wr;
    int reg_result_idx, ret, count = 0;
    uint64_t chunk, chunks;
    uint8_t *chunk_start, *chunk_end;
    RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
    RDMARegister reg;
    RDMARegisterResult *reg_result;
    RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
    RDMAControlHeader head = { .len = sizeof(RDMARegister),
                               .type = RDMA_CONTROL_REGISTER_REQUEST,
                               .repeat = 1,
                             };

retry:
    sge.addr = (uint64_t)(block->local_host_addr +
                            (current_addr - block->offset));
    sge.length = length;

    chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
    chunk_start = ram_chunk_start(block, chunk);

    if (block->is_ram_block) {
        chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);

        if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
            chunks--;
        }
    } else {
        chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);

        if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
            chunks--;
        }
    }

    DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
        chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);

    chunk_end = ram_chunk_end(block, chunk + chunks);

    if (!rdma->pin_all) {
#ifdef RDMA_UNREGISTRATION_EXAMPLE
        qemu_rdma_unregister_waiting(rdma);
#endif
    }

    while (test_bit(chunk, block->transit_bitmap)) {
        (void)count;
        DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
                " current %" PRIu64 " len %" PRIu64 " %d %d\n",
                count++, current_index, chunk,
                sge.addr, length, rdma->nb_sent, block->nb_chunks);

        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);

        if (ret < 0) {
            fprintf(stderr, "Failed to Wait for previous write to complete "
                    "block %d chunk %" PRIu64
                    " current %" PRIu64 " len %" PRIu64 " %d\n",
                    current_index, chunk, sge.addr, length, rdma->nb_sent);
            return ret;
        }
    }

    if (!rdma->pin_all || !block->is_ram_block) {
        if (!block->remote_keys[chunk]) {
            /*
             * This chunk has not yet been registered, so first check to see
             * if the entire chunk is zero. If so, tell the other size to
             * memset() + madvise() the entire chunk without RDMA.
             */

            if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
                   && buffer_find_nonzero_offset((void *)sge.addr,
                                                    length) == length) {
                RDMACompress comp = {
                                        .offset = current_addr,
                                        .value = 0,
                                        .block_idx = current_index,
                                        .length = length,
                                    };

                head.len = sizeof(comp);
                head.type = RDMA_CONTROL_COMPRESS;

                DDPRINTF("Entire chunk is zero, sending compress: %"
                    PRIu64 " for %d "
                    "bytes, index: %d, offset: %" PRId64 "...\n",
                    chunk, sge.length, current_index, current_addr);

                compress_to_network(&comp);
                ret = qemu_rdma_exchange_send(rdma, &head,
                                (uint8_t *) &comp, NULL, NULL, NULL);

                if (ret < 0) {
                    return -EIO;
                }

                acct_update_position(f, sge.length, true);

                return 1;
            }

            /*
             * Otherwise, tell other side to register.
             */
            reg.current_index = current_index;
            if (block->is_ram_block) {
                reg.key.current_addr = current_addr;
            } else {
                reg.key.chunk = chunk;
            }
            reg.chunks = chunks;

            DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
                    "bytes, index: %d, offset: %" PRId64 "...\n",
                    chunk, sge.length, current_index, current_addr);

            register_to_network(&reg);
            ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
                                    &resp, &reg_result_idx, NULL);
            if (ret < 0) {
                return ret;
            }

            /* try to overlap this single registration with the one we sent. */
            if (qemu_rdma_register_and_get_keys(rdma, block,
                                                (uint8_t *) sge.addr,
                                                &sge.lkey, NULL, chunk,
                                                chunk_start, chunk_end)) {
                fprintf(stderr, "cannot get lkey!\n");
                return -EINVAL;
            }

            reg_result = (RDMARegisterResult *)
                    rdma->wr_data[reg_result_idx].control_curr;

            network_to_result(reg_result);

            DDPRINTF("Received registration result:"
                    " my key: %x their key %x, chunk %" PRIu64 "\n",
                    block->remote_keys[chunk], reg_result->rkey, chunk);

            block->remote_keys[chunk] = reg_result->rkey;
            block->remote_host_addr = reg_result->host_addr;
        } else {
            /* already registered before */
            if (qemu_rdma_register_and_get_keys(rdma, block,
                                                (uint8_t *)sge.addr,
                                                &sge.lkey, NULL, chunk,
                                                chunk_start, chunk_end)) {
                fprintf(stderr, "cannot get lkey!\n");
                return -EINVAL;
            }
        }

        send_wr.wr.rdma.rkey = block->remote_keys[chunk];
    } else {
        send_wr.wr.rdma.rkey = block->remote_rkey;

        if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
                                                     &sge.lkey, NULL, chunk,
                                                     chunk_start, chunk_end)) {
            fprintf(stderr, "cannot get lkey!\n");
            return -EINVAL;
        }
    }

    /*
     * Encode the ram block index and chunk within this wrid.
     * We will use this information at the time of completion
     * to figure out which bitmap to check against and then which
     * chunk in the bitmap to look for.
     */
    send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
                                        current_index, chunk);

    send_wr.opcode = IBV_WR_RDMA_WRITE;
    send_wr.send_flags = IBV_SEND_SIGNALED;
    send_wr.sg_list = &sge;
    send_wr.num_sge = 1;
    send_wr.wr.rdma.remote_addr = block->remote_host_addr +
                                (current_addr - block->offset);

    DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
              " remote: %lx, bytes %" PRIu32 "\n",
              chunk, sge.addr, send_wr.wr.rdma.remote_addr,
              sge.length);

    /*
     * ibv_post_send() does not return negative error numbers,
     * per the specification they are positive - no idea why.
     */
    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);

    if (ret == ENOMEM) {
        DDPRINTF("send queue is full. wait a little....\n");
        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
        if (ret < 0) {
            fprintf(stderr, "rdma migration: failed to make "
                            "room in full send queue! %d\n", ret);
            return ret;
        }

        goto retry;

    } else if (ret > 0) {
        perror("rdma migration: post rdma write failed");
        return -ret;
    }

    set_bit(chunk, block->transit_bitmap);
    acct_update_position(f, sge.length, false);
    rdma->total_writes++;

    return 0;
}

/*
 * Push out any unwritten RDMA operations.
 *
 * We support sending out multiple chunks at the same time.
 * Not all of them need to get signaled in the completion queue.
 */
static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
{
    int ret;

    if (!rdma->current_length) {
        return 0;
    }

    ret = qemu_rdma_write_one(f, rdma,
            rdma->current_index, rdma->current_addr, rdma->current_length);

    if (ret < 0) {
        return ret;
    }

    if (ret == 0) {
        rdma->nb_sent++;
        DDDPRINTF("sent total: %d\n", rdma->nb_sent);
    }

    rdma->current_length = 0;
    rdma->current_addr = 0;

    return 0;
}

static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
                    uint64_t offset, uint64_t len)
{
    RDMALocalBlock *block;
    uint8_t *host_addr;
    uint8_t *chunk_end;

    if (rdma->current_index < 0) {
        return 0;
    }

    if (rdma->current_chunk < 0) {
        return 0;
    }

    block = &(rdma->local_ram_blocks.block[rdma->current_index]);
    host_addr = block->local_host_addr + (offset - block->offset);
    chunk_end = ram_chunk_end(block, rdma->current_chunk);

    if (rdma->current_length == 0) {
        return 0;
    }

    /*
     * Only merge into chunk sequentially.
     */
    if (offset != (rdma->current_addr + rdma->current_length)) {
        return 0;
    }

    if (offset < block->offset) {
        return 0;
    }

    if ((offset + len) > (block->offset + block->length)) {
        return 0;
    }

    if ((host_addr + len) > chunk_end) {
        return 0;
    }

    return 1;
}

/*
 * We're not actually writing here, but doing three things:
 *
 * 1. Identify the chunk the buffer belongs to.
 * 2. If the chunk is full or the buffer doesn't belong to the current
 *    chunk, then start a new chunk and flush() the old chunk.
 * 3. To keep the hardware busy, we also group chunks into batches
 *    and only require that a batch gets acknowledged in the completion
 *    qeueue instead of each individual chunk.
 */
static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
                           uint64_t block_offset, uint64_t offset,
                           uint64_t len)
{
    uint64_t current_addr = block_offset + offset;
    uint64_t index = rdma->current_index;
    uint64_t chunk = rdma->current_chunk;
    int ret;

    /* If we cannot merge it, we flush the current buffer first. */
    if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
        ret = qemu_rdma_write_flush(f, rdma);
        if (ret) {
            return ret;
        }
        rdma->current_length = 0;
        rdma->current_addr = current_addr;

        ret = qemu_rdma_search_ram_block(rdma, block_offset,
                                         offset, len, &index, &chunk);
        if (ret) {
            fprintf(stderr, "ram block search failed\n");
            return ret;
        }
        rdma->current_index = index;
        rdma->current_chunk = chunk;
    }

    /* merge it */
    rdma->current_length += len;

    /* flush it if buffer is too large */
    if (rdma->current_length >= RDMA_MERGE_MAX) {
        return qemu_rdma_write_flush(f, rdma);
    }

    return 0;
}

static void qemu_rdma_cleanup(RDMAContext *rdma)
{
    struct rdma_cm_event *cm_event;
    int ret, idx;

    if (rdma->cm_id) {
        if (rdma->error_state) {
            RDMAControlHeader head = { .len = 0,
                                       .type = RDMA_CONTROL_ERROR,
                                       .repeat = 1,
                                     };
            fprintf(stderr, "Early error. Sending error.\n");
            qemu_rdma_post_send_control(rdma, NULL, &head);
        }

        ret = rdma_disconnect(rdma->cm_id);
        if (!ret) {
            DDPRINTF("waiting for disconnect\n");
            ret = rdma_get_cm_event(rdma->channel, &cm_event);
            if (!ret) {
                rdma_ack_cm_event(cm_event);
            }
        }
        DDPRINTF("Disconnected.\n");
        rdma->cm_id = NULL;
    }

    g_free(rdma->block);
    rdma->block = NULL;

    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
        if (rdma->wr_data[idx].control_mr) {
            rdma->total_registrations--;
            ibv_dereg_mr(rdma->wr_data[idx].control_mr);
        }
        rdma->wr_data[idx].control_mr = NULL;
    }

    if (rdma->local_ram_blocks.block) {
        while (rdma->local_ram_blocks.nb_blocks) {
            __qemu_rdma_delete_block(rdma,
                    rdma->local_ram_blocks.block->offset);
        }
    }

    if (rdma->qp) {
        ibv_destroy_qp(rdma->qp);
        rdma->qp = NULL;
    }
    if (rdma->cq) {
        ibv_destroy_cq(rdma->cq);
        rdma->cq = NULL;
    }
    if (rdma->comp_channel) {
        ibv_destroy_comp_channel(rdma->comp_channel);
        rdma->comp_channel = NULL;
    }
    if (rdma->pd) {
        ibv_dealloc_pd(rdma->pd);
        rdma->pd = NULL;
    }
    if (rdma->listen_id) {
        rdma_destroy_id(rdma->listen_id);
        rdma->listen_id = NULL;
    }
    if (rdma->cm_id) {
        rdma_destroy_id(rdma->cm_id);
        rdma->cm_id = NULL;
    }
    if (rdma->channel) {
        rdma_destroy_event_channel(rdma->channel);
        rdma->channel = NULL;
    }
}


static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
{
    int ret, idx;
    Error *local_err = NULL, **temp = &local_err;

    /*
     * Will be validated against destination's actual capabilities
     * after the connect() completes.
     */
    rdma->pin_all = pin_all;

    ret = qemu_rdma_resolve_host(rdma, temp);
    if (ret) {
        goto err_rdma_source_init;
    }

    ret = qemu_rdma_alloc_pd_cq(rdma);
    if (ret) {
        ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
                    " limits may be too low. Please check $ ulimit -a # and "
                    "search for 'ulimit -l' in the output");
        goto err_rdma_source_init;
    }

    ret = qemu_rdma_alloc_qp(rdma);
    if (ret) {
        ERROR(temp, "rdma migration: error allocating qp!");
        goto err_rdma_source_init;
    }

    ret = qemu_rdma_init_ram_blocks(rdma);
    if (ret) {
        ERROR(temp, "rdma migration: error initializing ram blocks!");
        goto err_rdma_source_init;
    }

    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
        ret = qemu_rdma_reg_control(rdma, idx);
        if (ret) {
            ERROR(temp, "rdma migration: error registering %d control!",
                                                            idx);
            goto err_rdma_source_init;
        }
    }

    return 0;

err_rdma_source_init:
    error_propagate(errp, local_err);
    qemu_rdma_cleanup(rdma);
    return -1;
}

static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
{
    RDMACapabilities cap = {
                                .version = RDMA_CONTROL_VERSION_CURRENT,
                                .flags = 0,
                           };
    struct rdma_conn_param conn_param = { .initiator_depth = 2,
                                          .retry_count = 5,
                                          .private_data = &cap,
                                          .private_data_len = sizeof(cap),
                                        };
    struct rdma_cm_event *cm_event;
    int ret;

    /*
     * Only negotiate the capability with destination if the user
     * on the source first requested the capability.
     */
    if (rdma->pin_all) {
        DPRINTF("Server pin-all memory requested.\n");
        cap.flags |= RDMA_CAPABILITY_PIN_ALL;
    }

    caps_to_network(&cap);

    ret = rdma_connect(rdma->cm_id, &conn_param);
    if (ret) {
        perror("rdma_connect");
        ERROR(errp, "connecting to destination!");
        rdma_destroy_id(rdma->cm_id);
        rdma->cm_id = NULL;
        goto err_rdma_source_connect;
    }

    ret = rdma_get_cm_event(rdma->channel, &cm_event);
    if (ret) {
        perror("rdma_get_cm_event after rdma_connect");
        ERROR(errp, "connecting to destination!");
        rdma_ack_cm_event(cm_event);
        rdma_destroy_id(rdma->cm_id);
        rdma->cm_id = NULL;
        goto err_rdma_source_connect;
    }

    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
        perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
        ERROR(errp, "connecting to destination!");
        rdma_ack_cm_event(cm_event);
        rdma_destroy_id(rdma->cm_id);
        rdma->cm_id = NULL;
        goto err_rdma_source_connect;
    }

    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
    network_to_caps(&cap);

    /*
     * Verify that the *requested* capabilities are supported by the destination
     * and disable them otherwise.
     */
    if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
        ERROR(errp, "Server cannot support pinning all memory. "
                        "Will register memory dynamically.");
        rdma->pin_all = false;
    }

    DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");

    rdma_ack_cm_event(cm_event);

    ret = qemu_rdma_post_recv_control(rdma, 0);
    if (ret) {
        ERROR(errp, "posting second control recv!");
        goto err_rdma_source_connect;
    }

    rdma->control_ready_expected = 1;
    rdma->nb_sent = 0;
    return 0;

err_rdma_source_connect:
    qemu_rdma_cleanup(rdma);
    return -1;
}

static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
{
    int ret = -EINVAL, idx;
    int af = rdma->ipv6 ? PF_INET6 : PF_INET;
    struct sockaddr_in sin;
    struct rdma_cm_id *listen_id;
    char ip[40] = "unknown";
    struct addrinfo *res;
    char port_str[16];

    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
        rdma->wr_data[idx].control_len = 0;
        rdma->wr_data[idx].control_curr = NULL;
    }

    if (rdma->host == NULL) {
        ERROR(errp, "RDMA host is not set!");
        rdma->error_state = -EINVAL;
        return -1;
    }
    /* create CM channel */
    rdma->channel = rdma_create_event_channel();
    if (!rdma->channel) {
        ERROR(errp, "could not create rdma event channel");
        rdma->error_state = -EINVAL;
        return -1;
    }

    /* create CM id */
    ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
    if (ret) {
        ERROR(errp, "could not create cm_id!");
        goto err_dest_init_create_listen_id;
    }

    memset(&sin, 0, sizeof(sin));
    sin.sin_family = af;
    sin.sin_port = htons(rdma->port);
    snprintf(port_str, 16, "%d", rdma->port);
    port_str[15] = '\0';

    if (rdma->host && strcmp("", rdma->host)) {
        ret = getaddrinfo(rdma->host, port_str, NULL, &res);
        if (ret < 0) {
            ERROR(errp, "could not getaddrinfo address %s", rdma->host);
            goto err_dest_init_bind_addr;
        }


        inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
                                    ip, sizeof ip);
    } else {
        ERROR(errp, "migration host and port not specified!");
        ret = -EINVAL;
        goto err_dest_init_bind_addr;
    }

    DPRINTF("%s => %s\n", rdma->host, ip);

    ret = rdma_bind_addr(listen_id, res->ai_addr);
    if (ret) {
        ERROR(errp, "Error: could not rdma_bind_addr!");
        goto err_dest_init_bind_addr;
    }

    rdma->listen_id = listen_id;
    qemu_rdma_dump_gid("dest_init", listen_id);
    return 0;

err_dest_init_bind_addr:
    rdma_destroy_id(listen_id);
err_dest_init_create_listen_id:
    rdma_destroy_event_channel(rdma->channel);
    rdma->channel = NULL;
    rdma->error_state = ret;
    return ret;

}

static void *qemu_rdma_data_init(const char *host_port, Error **errp)
{
    RDMAContext *rdma = NULL;
    InetSocketAddress *addr;

    if (host_port) {
        rdma = g_malloc0(sizeof(RDMAContext));
        memset(rdma, 0, sizeof(RDMAContext));
        rdma->current_index = -1;
        rdma->current_chunk = -1;

        addr = inet_parse(host_port, NULL);
        if (addr != NULL) {
            rdma->port = atoi(addr->port);
            rdma->host = g_strdup(addr->host);
            rdma->ipv6 = addr->ipv6;
        } else {
            ERROR(errp, "bad RDMA migration address '%s'", host_port);
            g_free(rdma);
            return NULL;
        }
    }

    return rdma;
}

/*
 * QEMUFile interface to the control channel.
 * SEND messages for control only.
 * pc.ram is handled with regular RDMA messages.
 */
static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
                                int64_t pos, int size)
{
    QEMUFileRDMA *r = opaque;
    QEMUFile *f = r->file;
    RDMAContext *rdma = r->rdma;
    size_t remaining = size;
    uint8_t * data = (void *) buf;
    int ret;

    CHECK_ERROR_STATE();

    /*
     * Push out any writes that
     * we're queued up for pc.ram.
     */
    ret = qemu_rdma_write_flush(f, rdma);
    if (ret < 0) {
        rdma->error_state = ret;
        return ret;
    }

    while (remaining) {
        RDMAControlHeader head;

        r->len = MIN(remaining, RDMA_SEND_INCREMENT);
        remaining -= r->len;

        head.len = r->len;
        head.type = RDMA_CONTROL_QEMU_FILE;

        ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);

        if (ret < 0) {
            rdma->error_state = ret;
            return ret;
        }

        data += r->len;
    }

    return size;
}

static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
                             int size, int idx)
{
    size_t len = 0;

    if (rdma->wr_data[idx].control_len) {
        DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
                    rdma->wr_data[idx].control_len, size);

        len = MIN(size, rdma->wr_data[idx].control_len);
        memcpy(buf, rdma->wr_data[idx].control_curr, len);
        rdma->wr_data[idx].control_curr += len;
        rdma->wr_data[idx].control_len -= len;
    }

    return len;
}

/*
 * QEMUFile interface to the control channel.
 * RDMA links don't use bytestreams, so we have to
 * return bytes to QEMUFile opportunistically.
 */
static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
                                int64_t pos, int size)
{
    QEMUFileRDMA *r = opaque;
    RDMAContext *rdma = r->rdma;
    RDMAControlHeader head;
    int ret = 0;

    CHECK_ERROR_STATE();

    /*
     * First, we hold on to the last SEND message we
     * were given and dish out the bytes until we run
     * out of bytes.
     */
    r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
    if (r->len) {
        return r->len;
    }

    /*
     * Once we run out, we block and wait for another
     * SEND message to arrive.
     */
    ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);

    if (ret < 0) {
        rdma->error_state = ret;
        return ret;
    }

    /*
     * SEND was received with new bytes, now try again.
     */
    return qemu_rdma_fill(r->rdma, buf, size, 0);
}

/*
 * Block until all the outstanding chunks have been delivered by the hardware.
 */
static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
{
    int ret;

    if (qemu_rdma_write_flush(f, rdma) < 0) {
        return -EIO;
    }

    while (rdma->nb_sent) {
        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
        if (ret < 0) {
            fprintf(stderr, "rdma migration: complete polling error!\n");
            return -EIO;
        }
    }

    qemu_rdma_unregister_waiting(rdma);

    return 0;
}

static int qemu_rdma_close(void *opaque)
{
    DPRINTF("Shutting down connection.\n");
    QEMUFileRDMA *r = opaque;
    if (r->rdma) {
        qemu_rdma_cleanup(r->rdma);
        g_free(r->rdma);
    }
    g_free(r);
    return 0;
}

/*
 * Parameters:
 *    @offset == 0 :
 *        This means that 'block_offset' is a full virtual address that does not
 *        belong to a RAMBlock of the virtual machine and instead
 *        represents a private malloc'd memory area that the caller wishes to
 *        transfer.
 *
 *    @offset != 0 :
 *        Offset is an offset to be added to block_offset and used
 *        to also lookup the corresponding RAMBlock.
 *
 *    @size > 0 :
 *        Initiate an transfer this size.
 *
 *    @size == 0 :
 *        A 'hint' or 'advice' that means that we wish to speculatively
 *        and asynchronously unregister this memory. In this case, there is no
 *        guarantee that the unregister will actually happen, for example,
 *        if the memory is being actively transmitted. Additionally, the memory
 *        may be re-registered at any future time if a write within the same
 *        chunk was requested again, even if you attempted to unregister it
 *        here.
 *
 *    @size < 0 : TODO, not yet supported
 *        Unregister the memory NOW. This means that the caller does not
 *        expect there to be any future RDMA transfers and we just want to clean
 *        things up. This is used in case the upper layer owns the memory and
 *        cannot wait for qemu_fclose() to occur.
 *
 *    @bytes_sent : User-specificed pointer to indicate how many bytes were
 *                  sent. Usually, this will not be more than a few bytes of
 *                  the protocol because most transfers are sent asynchronously.
 */
static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
                                  ram_addr_t block_offset, ram_addr_t offset,
                                  size_t size, int *bytes_sent)
{
    QEMUFileRDMA *rfile = opaque;
    RDMAContext *rdma = rfile->rdma;
    int ret;

    CHECK_ERROR_STATE();

    qemu_fflush(f);

    if (size > 0) {
        /*
         * Add this page to the current 'chunk'. If the chunk
         * is full, or the page doen't belong to the current chunk,
         * an actual RDMA write will occur and a new chunk will be formed.
         */
        ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
        if (ret < 0) {
            fprintf(stderr, "rdma migration: write error! %d\n", ret);
            goto err;
        }

        /*
         * We always return 1 bytes because the RDMA
         * protocol is completely asynchronous. We do not yet know
         * whether an  identified chunk is zero or not because we're
         * waiting for other pages to potentially be merged with
         * the current chunk. So, we have to call qemu_update_position()
         * later on when the actual write occurs.
         */
        if (bytes_sent) {
            *bytes_sent = 1;
        }
    } else {
        uint64_t index, chunk;

        /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
        if (size < 0) {
            ret = qemu_rdma_drain_cq(f, rdma);
            if (ret < 0) {
                fprintf(stderr, "rdma: failed to synchronously drain"
                                " completion queue before unregistration.\n");
                goto err;
            }
        }
        */

        ret = qemu_rdma_search_ram_block(rdma, block_offset,
                                         offset, size, &index, &chunk);

        if (ret) {
            fprintf(stderr, "ram block search failed\n");
            goto err;
        }

        qemu_rdma_signal_unregister(rdma, index, chunk, 0);

        /*
         * TODO: Synchronous, guaranteed unregistration (should not occur during
         * fast-path). Otherwise, unregisters will process on the next call to
         * qemu_rdma_drain_cq()
        if (size < 0) {
            qemu_rdma_unregister_waiting(rdma);
        }
        */
    }

    /*
     * Drain the Completion Queue if possible, but do not block,
     * just poll.
     *
     * If nothing to poll, the end of the iteration will do this
     * again to make sure we don't overflow the request queue.
     */
    while (1) {
        uint64_t wr_id, wr_id_in;
        int ret = qemu_rdma_poll(rdma, &wr_id_in);
        if (ret < 0) {
            fprintf(stderr, "rdma migration: polling error! %d\n", ret);
            goto err;
        }

        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;

        if (wr_id == RDMA_WRID_NONE) {
            break;
        }
    }

    return RAM_SAVE_CONTROL_DELAYED;
err:
    rdma->error_state = ret;
    return ret;
}

static int qemu_rdma_accept(RDMAContext *rdma)
{
    RDMACapabilities cap;
    struct rdma_conn_param conn_param = {
                                            .responder_resources = 2,
                                            .private_data = &cap,
                                            .private_data_len = sizeof(cap),
                                         };
    struct rdma_cm_event *cm_event;
    struct ibv_context *verbs;
    int ret = -EINVAL;
    int idx;

    ret = rdma_get_cm_event(rdma->channel, &cm_event);
    if (ret) {
        goto err_rdma_dest_wait;
    }

    if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
        rdma_ack_cm_event(cm_event);
        goto err_rdma_dest_wait;
    }

    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));

    network_to_caps(&cap);

    if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
            fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
                            cap.version);
            rdma_ack_cm_event(cm_event);
            goto err_rdma_dest_wait;
    }

    /*
     * Respond with only the capabilities this version of QEMU knows about.
     */
    cap.flags &= known_capabilities;

    /*
     * Enable the ones that we do know about.
     * Add other checks here as new ones are introduced.
     */
    if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
        rdma->pin_all = true;
    }

    rdma->cm_id = cm_event->id;
    verbs = cm_event->id->verbs;

    rdma_ack_cm_event(cm_event);

    DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");

    caps_to_network(&cap);

    DPRINTF("verbs context after listen: %p\n", verbs);

    if (!rdma->verbs) {
        rdma->verbs = verbs;
    } else if (rdma->verbs != verbs) {
            fprintf(stderr, "ibv context not matching %p, %p!\n",
                    rdma->verbs, verbs);
            goto err_rdma_dest_wait;
    }

    qemu_rdma_dump_id("dest_init", verbs);

    ret = qemu_rdma_alloc_pd_cq(rdma);
    if (ret) {
        fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
        goto err_rdma_dest_wait;
    }

    ret = qemu_rdma_alloc_qp(rdma);
    if (ret) {
        fprintf(stderr, "rdma migration: error allocating qp!\n");
        goto err_rdma_dest_wait;
    }

    ret = qemu_rdma_init_ram_blocks(rdma);
    if (ret) {
        fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
        goto err_rdma_dest_wait;
    }

    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
        ret = qemu_rdma_reg_control(rdma, idx);
        if (ret) {
            fprintf(stderr, "rdma: error registering %d control!\n", idx);
            goto err_rdma_dest_wait;
        }
    }

    qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);

    ret = rdma_accept(rdma->cm_id, &conn_param);
    if (ret) {
        fprintf(stderr, "rdma_accept returns %d!\n", ret);
        goto err_rdma_dest_wait;
    }

    ret = rdma_get_cm_event(rdma->channel, &cm_event);
    if (ret) {
        fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
        goto err_rdma_dest_wait;
    }

    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
        fprintf(stderr, "rdma_accept not event established!\n");
        rdma_ack_cm_event(cm_event);
        goto err_rdma_dest_wait;
    }

    rdma_ack_cm_event(cm_event);

    ret = qemu_rdma_post_recv_control(rdma, 0);
    if (ret) {
        fprintf(stderr, "rdma migration: error posting second control recv!\n");
        goto err_rdma_dest_wait;
    }

    qemu_rdma_dump_gid("dest_connect", rdma->cm_id);

    return 0;

err_rdma_dest_wait:
    rdma->error_state = ret;
    qemu_rdma_cleanup(rdma);
    return ret;
}

/*
 * During each iteration of the migration, we listen for instructions
 * by the source VM to perform dynamic page registrations before they
 * can perform RDMA operations.
 *
 * We respond with the 'rkey'.
 *
 * Keep doing this until the source tells us to stop.
 */
static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
                                         uint64_t flags)
{
    RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
                               .type = RDMA_CONTROL_REGISTER_RESULT,
                               .repeat = 0,
                             };
    RDMAControlHeader unreg_resp = { .len = 0,
                               .type = RDMA_CONTROL_UNREGISTER_FINISHED,
                               .repeat = 0,
                             };
    RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
                                 .repeat = 1 };
    QEMUFileRDMA *rfile = opaque;
    RDMAContext *rdma = rfile->rdma;
    RDMALocalBlocks *local = &rdma->local_ram_blocks;
    RDMAControlHeader head;
    RDMARegister *reg, *registers;
    RDMACompress *comp;
    RDMARegisterResult *reg_result;
    static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
    RDMALocalBlock *block;
    void *host_addr;
    int ret = 0;
    int idx = 0;
    int count = 0;
    int i = 0;

    CHECK_ERROR_STATE();

    do {
        DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);

        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);

        if (ret < 0) {
            break;
        }

        if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
            fprintf(stderr, "rdma: Too many requests in this message (%d)."
                            "Bailing.\n", head.repeat);
            ret = -EIO;
            break;
        }

        switch (head.type) {
        case RDMA_CONTROL_COMPRESS:
            comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
            network_to_compress(comp);

            DDPRINTF("Zapping zero chunk: %" PRId64
                    " bytes, index %d, offset %" PRId64 "\n",
                    comp->length, comp->block_idx, comp->offset);
            block = &(rdma->local_ram_blocks.block[comp->block_idx]);

            host_addr = block->local_host_addr +
                            (comp->offset - block->offset);

            ram_handle_compressed(host_addr, comp->value, comp->length);
            break;

        case RDMA_CONTROL_REGISTER_FINISHED:
            DDDPRINTF("Current registrations complete.\n");
            goto out;

        case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
            DPRINTF("Initial setup info requested.\n");

            if (rdma->pin_all) {
                ret = qemu_rdma_reg_whole_ram_blocks(rdma);
                if (ret) {
                    fprintf(stderr, "rdma migration: error dest "
                                    "registering ram blocks!\n");
                    goto out;
                }
            }

            /*
             * Dest uses this to prepare to transmit the RAMBlock descriptions
             * to the source VM after connection setup.
             * Both sides use the "remote" structure to communicate and update
             * their "local" descriptions with what was sent.
             */
            for (i = 0; i < local->nb_blocks; i++) {
                rdma->block[i].remote_host_addr =
                    (uint64_t)(local->block[i].local_host_addr);

                if (rdma->pin_all) {
                    rdma->block[i].remote_rkey = local->block[i].mr->rkey;
                }

                rdma->block[i].offset = local->block[i].offset;
                rdma->block[i].length = local->block[i].length;

                remote_block_to_network(&rdma->block[i]);
            }

            blocks.len = rdma->local_ram_blocks.nb_blocks
                                                * sizeof(RDMARemoteBlock);


            ret = qemu_rdma_post_send_control(rdma,
                                        (uint8_t *) rdma->block, &blocks);

            if (ret < 0) {
                fprintf(stderr, "rdma migration: error sending remote info!\n");
                goto out;
            }

            break;
        case RDMA_CONTROL_REGISTER_REQUEST:
            DDPRINTF("There are %d registration requests\n", head.repeat);

            reg_resp.repeat = head.repeat;
            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;

            for (count = 0; count < head.repeat; count++) {
                uint64_t chunk;
                uint8_t *chunk_start, *chunk_end;

                reg = &registers[count];
                network_to_register(reg);

                reg_result = &results[count];

                DDPRINTF("Registration request (%d): index %d, current_addr %"
                         PRIu64 " chunks: %" PRIu64 "\n", count,
                         reg->current_index, reg->key.current_addr, reg->chunks);

                block = &(rdma->local_ram_blocks.block[reg->current_index]);
                if (block->is_ram_block) {
                    host_addr = (block->local_host_addr +
                                (reg->key.current_addr - block->offset));
                    chunk = ram_chunk_index(block->local_host_addr,
                                            (uint8_t *) host_addr);
                } else {
                    chunk = reg->key.chunk;
                    host_addr = block->local_host_addr +
                        (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
                }
                chunk_start = ram_chunk_start(block, chunk);
                chunk_end = ram_chunk_end(block, chunk + reg->chunks);
                if (qemu_rdma_register_and_get_keys(rdma, block,
                            (uint8_t *)host_addr, NULL, &reg_result->rkey,
                            chunk, chunk_start, chunk_end)) {
                    fprintf(stderr, "cannot get rkey!\n");
                    ret = -EINVAL;
                    goto out;
                }

                reg_result->host_addr = (uint64_t) block->local_host_addr;

                DDPRINTF("Registered rkey for this request: %x\n",
                                reg_result->rkey);

                result_to_network(reg_result);
            }

            ret = qemu_rdma_post_send_control(rdma,
                            (uint8_t *) results, &reg_resp);

            if (ret < 0) {
                fprintf(stderr, "Failed to send control buffer!\n");
                goto out;
            }
            break;
        case RDMA_CONTROL_UNREGISTER_REQUEST:
            DDPRINTF("There are %d unregistration requests\n", head.repeat);
            unreg_resp.repeat = head.repeat;
            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;

            for (count = 0; count < head.repeat; count++) {
                reg = &registers[count];
                network_to_register(reg);

                DDPRINTF("Unregistration request (%d): "
                         " index %d, chunk %" PRIu64 "\n",
                         count, reg->current_index, reg->key.chunk);

                block = &(rdma->local_ram_blocks.block[reg->current_index]);

                ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
                block->pmr[reg->key.chunk] = NULL;

                if (ret != 0) {
                    perror("rdma unregistration chunk failed");
                    ret = -ret;
                    goto out;
                }

                rdma->total_registrations--;

                DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
                            reg->key.chunk);
            }

            ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);

            if (ret < 0) {
                fprintf(stderr, "Failed to send control buffer!\n");
                goto out;
            }
            break;
        case RDMA_CONTROL_REGISTER_RESULT:
            fprintf(stderr, "Invalid RESULT message at dest.\n");
            ret = -EIO;
            goto out;
        default:
            fprintf(stderr, "Unknown control message %s\n",
                                control_desc[head.type]);
            ret = -EIO;
            goto out;
        }
    } while (1);
out:
    if (ret < 0) {
        rdma->error_state = ret;
    }
    return ret;
}

static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
                                        uint64_t flags)
{
    QEMUFileRDMA *rfile = opaque;
    RDMAContext *rdma = rfile->rdma;

    CHECK_ERROR_STATE();

    DDDPRINTF("start section: %" PRIu64 "\n", flags);
    qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
    qemu_fflush(f);

    return 0;
}

/*
 * Inform dest that dynamic registrations are done for now.
 * First, flush writes, if any.
 */
static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
                                       uint64_t flags)
{
    Error *local_err = NULL, **errp = &local_err;
    QEMUFileRDMA *rfile = opaque;
    RDMAContext *rdma = rfile->rdma;
    RDMAControlHeader head = { .len = 0, .repeat = 1 };
    int ret = 0;

    CHECK_ERROR_STATE();

    qemu_fflush(f);
    ret = qemu_rdma_drain_cq(f, rdma);

    if (ret < 0) {
        goto err;
    }

    if (flags == RAM_CONTROL_SETUP) {
        RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
        RDMALocalBlocks *local = &rdma->local_ram_blocks;
        int reg_result_idx, i, j, nb_remote_blocks;

        head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
        DPRINTF("Sending registration setup for ram blocks...\n");

        /*
         * Make sure that we parallelize the pinning on both sides.
         * For very large guests, doing this serially takes a really
         * long time, so we have to 'interleave' the pinning locally
         * with the control messages by performing the pinning on this
         * side before we receive the control response from the other
         * side that the pinning has completed.
         */
        ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
                    &reg_result_idx, rdma->pin_all ?
                    qemu_rdma_reg_whole_ram_blocks : NULL);
        if (ret < 0) {
            ERROR(errp, "receiving remote info!");
            return ret;
        }

        qemu_rdma_move_header(rdma, reg_result_idx, &resp);
        memcpy(rdma->block,
            rdma->wr_data[reg_result_idx].control_curr, resp.len);

        nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);

        /*
         * The protocol uses two different sets of rkeys (mutually exclusive):
         * 1. One key to represent the virtual address of the entire ram block.
         *    (dynamic chunk registration disabled - pin everything with one rkey.)
         * 2. One to represent individual chunks within a ram block.
         *    (dynamic chunk registration enabled - pin individual chunks.)
         *
         * Once the capability is successfully negotiated, the destination transmits
         * the keys to use (or sends them later) including the virtual addresses
         * and then propagates the remote ram block descriptions to his local copy.
         */

        if (local->nb_blocks != nb_remote_blocks) {
            ERROR(errp, "ram blocks mismatch #1! "
                        "Your QEMU command line parameters are probably "
                        "not identical on both the source and destination.");
            return -EINVAL;
        }

        for (i = 0; i < nb_remote_blocks; i++) {
            network_to_remote_block(&rdma->block[i]);

            /* search local ram blocks */
            for (j = 0; j < local->nb_blocks; j++) {
                if (rdma->block[i].offset != local->block[j].offset) {
                    continue;
                }

                if (rdma->block[i].length != local->block[j].length) {
                    ERROR(errp, "ram blocks mismatch #2! "
                        "Your QEMU command line parameters are probably "
                        "not identical on both the source and destination.");
                    return -EINVAL;
                }
                local->block[j].remote_host_addr =
                        rdma->block[i].remote_host_addr;
                local->block[j].remote_rkey = rdma->block[i].remote_rkey;
                break;
            }

            if (j >= local->nb_blocks) {
                ERROR(errp, "ram blocks mismatch #3! "
                        "Your QEMU command line parameters are probably "
                        "not identical on both the source and destination.");
                return -EINVAL;
            }
        }
    }

    DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);

    head.type = RDMA_CONTROL_REGISTER_FINISHED;
    ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);

    if (ret < 0) {
        goto err;
    }

    return 0;
err:
    rdma->error_state = ret;
    return ret;
}

static int qemu_rdma_get_fd(void *opaque)
{
    QEMUFileRDMA *rfile = opaque;
    RDMAContext *rdma = rfile->rdma;

    return rdma->comp_channel->fd;
}

const QEMUFileOps rdma_read_ops = {
    .get_buffer    = qemu_rdma_get_buffer,
    .get_fd        = qemu_rdma_get_fd,
    .close         = qemu_rdma_close,
    .hook_ram_load = qemu_rdma_registration_handle,
};

const QEMUFileOps rdma_write_ops = {
    .put_buffer         = qemu_rdma_put_buffer,
    .close              = qemu_rdma_close,
    .before_ram_iterate = qemu_rdma_registration_start,
    .after_ram_iterate  = qemu_rdma_registration_stop,
    .save_page          = qemu_rdma_save_page,
};

static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
{
    QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));

    if (qemu_file_mode_is_not_valid(mode)) {
        return NULL;
    }

    r->rdma = rdma;

    if (mode[0] == 'w') {
        r->file = qemu_fopen_ops(r, &rdma_write_ops);
    } else {
        r->file = qemu_fopen_ops(r, &rdma_read_ops);
    }

    return r->file;
}

static void rdma_accept_incoming_migration(void *opaque)
{
    RDMAContext *rdma = opaque;
    int ret;
    QEMUFile *f;
    Error *local_err = NULL, **errp = &local_err;

    DPRINTF("Accepting rdma connection...\n");
    ret = qemu_rdma_accept(rdma);

    if (ret) {
        ERROR(errp, "RDMA Migration initialization failed!");
        return;
    }

    DPRINTF("Accepted migration\n");

    f = qemu_fopen_rdma(rdma, "rb");
    if (f == NULL) {
        ERROR(errp, "could not qemu_fopen_rdma!");
        qemu_rdma_cleanup(rdma);
        return;
    }

    rdma->migration_started_on_destination = 1;
    process_incoming_migration(f);
}

void rdma_start_incoming_migration(const char *host_port, Error **errp)
{
    int ret;
    RDMAContext *rdma;
    Error *local_err = NULL;

    DPRINTF("Starting RDMA-based incoming migration\n");
    rdma = qemu_rdma_data_init(host_port, &local_err);

    if (rdma == NULL) {
        goto err;
    }

    ret = qemu_rdma_dest_init(rdma, &local_err);

    if (ret) {
        goto err;
    }

    DPRINTF("qemu_rdma_dest_init success\n");

    ret = rdma_listen(rdma->listen_id, 5);

    if (ret) {
        ERROR(errp, "listening on socket!");
        goto err;
    }

    DPRINTF("rdma_listen success\n");

    qemu_set_fd_handler2(rdma->channel->fd, NULL,
                         rdma_accept_incoming_migration, NULL,
                            (void *)(intptr_t) rdma);
    return;
err:
    error_propagate(errp, local_err);
    g_free(rdma);
}

void rdma_start_outgoing_migration(void *opaque,
                            const char *host_port, Error **errp)
{
    MigrationState *s = opaque;
    Error *local_err = NULL, **temp = &local_err;
    RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
    int ret = 0;

    if (rdma == NULL) {
        ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
        goto err;
    }

    ret = qemu_rdma_source_init(rdma, &local_err,
        s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);

    if (ret) {
        goto err;
    }

    DPRINTF("qemu_rdma_source_init success\n");
    ret = qemu_rdma_connect(rdma, &local_err);

    if (ret) {
        goto err;
    }

    DPRINTF("qemu_rdma_source_connect success\n");

    s->file = qemu_fopen_rdma(rdma, "wb");
    migrate_fd_connect(s);
    return;
err:
    error_propagate(errp, local_err);
    g_free(rdma);
    migrate_fd_error(s);
}