aboutsummaryrefslogtreecommitdiff
path: root/linux-user/vm86.c
blob: e4f9b85c84cec0422b7e1b033b575354d55fbaac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/*
 *  vm86 linux syscall support
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include "qemu.h"

//#define DEBUG_VM86

#define set_flags(X,new,mask) \
((X) = ((X) & ~(mask)) | ((new) & (mask)))

#define SAFE_MASK	(0xDD5)
#define RETURN_MASK	(0xDFF)

static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
{
    return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
}

static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val)
{
    *(uint16_t *)(segptr + (reg16 & 0xffff)) = tswap16(val);
}

static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val)
{
    *(uint32_t *)(segptr + (reg16 & 0xffff)) = tswap32(val);
}

static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16)
{
    return tswap16(*(uint16_t *)(segptr + (reg16 & 0xffff)));
}

static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16)
{
    return tswap32(*(uint16_t *)(segptr + (reg16 & 0xffff)));
}

void save_v86_state(CPUX86State *env)
{
    TaskState *ts = env->opaque;

    /* put the VM86 registers in the userspace register structure */
    ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]);
    ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
    ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
    ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]);
    ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]);
    ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]);
    ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
    ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]);
    ts->target_v86->regs.eip = tswap32(env->eip);
    ts->target_v86->regs.cs = tswap16(env->segs[R_CS]);
    ts->target_v86->regs.ss = tswap16(env->segs[R_SS]);
    ts->target_v86->regs.ds = tswap16(env->segs[R_DS]);
    ts->target_v86->regs.es = tswap16(env->segs[R_ES]);
    ts->target_v86->regs.fs = tswap16(env->segs[R_FS]);
    ts->target_v86->regs.gs = tswap16(env->segs[R_GS]);
    set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
    ts->target_v86->regs.eflags = tswap32(env->eflags);
#ifdef DEBUG_VM86
    fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n", 
            env->eflags, env->segs[R_CS], env->eip);
#endif

    /* restore 32 bit registers */
    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
    env->eflags = ts->vm86_saved_regs.eflags;
    env->eip = ts->vm86_saved_regs.eip;

    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
}

/* return from vm86 mode to 32 bit. The vm86() syscall will return
   'retval' */
static inline void return_to_32bit(CPUX86State *env, int retval)
{
#ifdef DEBUG_VM86
    fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval);
#endif
    save_v86_state(env);
    env->regs[R_EAX] = retval;
}

static inline int set_IF(CPUX86State *env)
{
    TaskState *ts = env->opaque;
    
    ts->v86flags |= VIF_MASK;
    if (ts->v86flags & VIP_MASK) {
        return_to_32bit(env, TARGET_VM86_STI);
        return 1;
    }
    return 0;
}

static inline void clear_IF(CPUX86State *env)
{
    TaskState *ts = env->opaque;

    ts->v86flags &= ~VIF_MASK;
}

static inline void clear_TF(CPUX86State *env)
{
    env->eflags &= ~TF_MASK;
}

static inline void clear_AC(CPUX86State *env)
{
    env->eflags &= ~AC_MASK;
}

static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
{
    TaskState *ts = env->opaque;

    set_flags(ts->v86flags, eflags, ts->v86mask);
    set_flags(env->eflags, eflags, SAFE_MASK);
    if (eflags & IF_MASK)
        return set_IF(env);
    else
        clear_IF(env);
    return 0;
}

static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
{
    TaskState *ts = env->opaque;

    set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
    set_flags(env->eflags, flags, SAFE_MASK);
    if (flags & IF_MASK)
        return set_IF(env);
    else
        clear_IF(env);
    return 0;
}

static inline unsigned int get_vflags(CPUX86State *env)
{
    TaskState *ts = env->opaque;
    unsigned int flags;

    flags = env->eflags & RETURN_MASK;
    if (ts->v86flags & VIF_MASK)
        flags |= IF_MASK;
    return flags | (ts->v86flags & ts->v86mask);
}

#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)

/* handle VM86 interrupt (NOTE: the CPU core currently does not
   support TSS interrupt revectoring, so this code is always executed) */
static void do_int(CPUX86State *env, int intno)
{
    TaskState *ts = env->opaque;
    uint32_t *int_ptr, segoffs;
    uint8_t *ssp;
    unsigned int sp;

    if (env->segs[R_CS] == TARGET_BIOSSEG)
        goto cannot_handle;
    if (is_revectored(intno, &ts->vm86plus.int_revectored))
        goto cannot_handle;
    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, 
                                       &ts->vm86plus.int21_revectored))
        goto cannot_handle;
    int_ptr = (uint32_t *)(intno << 2);
    segoffs = tswap32(*int_ptr);
    if ((segoffs >> 16) == TARGET_BIOSSEG)
        goto cannot_handle;
#if defined(DEBUG_VM86)
    fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", 
            intno, segoffs >> 16, segoffs & 0xffff);
#endif
    /* save old state */
    ssp = (uint8_t *)(env->segs[R_SS] << 4);
    sp = env->regs[R_ESP] & 0xffff;
    vm_putw(ssp, sp - 2, get_vflags(env));
    vm_putw(ssp, sp - 4, env->segs[R_CS]);
    vm_putw(ssp, sp - 6, env->eip);
    ADD16(env->regs[R_ESP], -6);
    /* goto interrupt handler */
    env->eip = segoffs & 0xffff;
    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
    clear_TF(env);
    clear_IF(env);
    clear_AC(env);
    return;
 cannot_handle:
#if defined(DEBUG_VM86)
    fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno);
#endif
    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
}

void handle_vm86_trap(CPUX86State *env, int trapno)
{
    if (trapno == 1 || trapno == 3) {
        return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
    } else {
        do_int(env, trapno);
    }
}

#define CHECK_IF_IN_TRAP() \
      if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
          (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
		newflags |= TF_MASK

#define VM86_FAULT_RETURN \
        if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
            (ts->v86flags & (IF_MASK | VIF_MASK))) \
            return_to_32bit(env, TARGET_VM86_PICRETURN); \
        return

void handle_vm86_fault(CPUX86State *env)
{
    TaskState *ts = env->opaque;
    uint8_t *csp, *pc, *ssp;
    unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
    int data32, pref_done;

    csp = (uint8_t *)(env->segs[R_CS] << 4);
    ip = env->eip & 0xffff;
    pc = csp + ip;
    
    ssp = (uint8_t *)(env->segs[R_SS] << 4);
    sp = env->regs[R_ESP] & 0xffff;

#if defined(DEBUG_VM86)
    fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n",
            env->segs[R_CS], env->eip, pc[0], pc[1]);
#endif

    data32 = 0;
    pref_done = 0;
    do {
        opcode = csp[ip];
        ADD16(ip, 1);
        switch (opcode) {
        case 0x66:      /* 32-bit data */     data32=1; break;
        case 0x67:      /* 32-bit address */  break;
        case 0x2e:      /* CS */              break;
        case 0x3e:      /* DS */              break;
        case 0x26:      /* ES */              break;
        case 0x36:      /* SS */              break;
        case 0x65:      /* GS */              break;
        case 0x64:      /* FS */              break;
        case 0xf2:      /* repnz */	      break;
        case 0xf3:      /* rep */             break;
        default: pref_done = 1;
        }
    } while (!pref_done);

    /* VM86 mode */
    switch(opcode) {
    case 0x9c: /* pushf */
        if (data32) {
            vm_putl(ssp, sp - 4, get_vflags(env));
            ADD16(env->regs[R_ESP], -4);
        } else {
            vm_putw(ssp, sp - 2, get_vflags(env));
            ADD16(env->regs[R_ESP], -2);
        }
        env->eip = ip;
        VM86_FAULT_RETURN;

    case 0x9d: /* popf */
        if (data32) {
            newflags = vm_getl(ssp, sp);
            ADD16(env->regs[R_ESP], 4);
        } else {
            newflags = vm_getw(ssp, sp);
            ADD16(env->regs[R_ESP], 2);
        }
        env->eip = ip;
        CHECK_IF_IN_TRAP();
        if (data32) {
            if (set_vflags_long(newflags, env))
                return;
        } else {
            if (set_vflags_short(newflags, env))
                return;
        }
        VM86_FAULT_RETURN;

    case 0xcd: /* int */
        intno = csp[ip];
        ADD16(ip, 1);
        env->eip = ip;
        if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
            if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >> 
                  (intno &7)) & 1) {
                return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
                return;
            }
        }
        do_int(env, intno);
        break;

    case 0xcf: /* iret */
        if (data32) {
            newip = vm_getl(ssp, sp) & 0xffff;
            newcs = vm_getl(ssp, sp + 4) & 0xffff;
            newflags = vm_getl(ssp, sp + 8);
            ADD16(env->regs[R_ESP], 12);
        } else {
            newip = vm_getw(ssp, sp);
            newcs = vm_getw(ssp, sp + 2);
            newflags = vm_getw(ssp, sp + 4);
            ADD16(env->regs[R_ESP], 6);
        }
        env->eip = newip;
        cpu_x86_load_seg(env, R_CS, newcs);
        CHECK_IF_IN_TRAP();
        if (data32) {
            if (set_vflags_long(newflags, env))
                return;
        } else {
            if (set_vflags_short(newflags, env))
                return;
        }
        VM86_FAULT_RETURN;
        
    case 0xfa: /* cli */
        env->eip = ip;
        clear_IF(env);
        VM86_FAULT_RETURN;
        
    case 0xfb: /* sti */
        env->eip = ip;
        if (set_IF(env))
            return;
        VM86_FAULT_RETURN;

    default:
        /* real VM86 GPF exception */
        return_to_32bit(env, TARGET_VM86_UNKNOWN);
        break;
    }
}

int do_vm86(CPUX86State *env, long subfunction, 
            struct target_vm86plus_struct * target_v86)
{
    TaskState *ts = env->opaque;
    int ret;
    
    switch (subfunction) {
    case TARGET_VM86_REQUEST_IRQ:
    case TARGET_VM86_FREE_IRQ:
    case TARGET_VM86_GET_IRQ_BITS:
    case TARGET_VM86_GET_AND_RESET_IRQ:
        gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
        ret = -EINVAL;
        goto out;
    case TARGET_VM86_PLUS_INSTALL_CHECK:
        /* NOTE: on old vm86 stuff this will return the error
           from verify_area(), because the subfunction is
           interpreted as (invalid) address to vm86_struct.
           So the installation check works.
            */
        ret = 0;
        goto out;
    }

    ts->target_v86 = target_v86;
    /* save current CPU regs */
    ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
    ts->vm86_saved_regs.ebx = env->regs[R_EBX];
    ts->vm86_saved_regs.ecx = env->regs[R_ECX];
    ts->vm86_saved_regs.edx = env->regs[R_EDX];
    ts->vm86_saved_regs.esi = env->regs[R_ESI];
    ts->vm86_saved_regs.edi = env->regs[R_EDI];
    ts->vm86_saved_regs.ebp = env->regs[R_EBP];
    ts->vm86_saved_regs.esp = env->regs[R_ESP];
    ts->vm86_saved_regs.eflags = env->eflags;
    ts->vm86_saved_regs.eip  = env->eip;
    ts->vm86_saved_regs.cs = env->segs[R_CS];
    ts->vm86_saved_regs.ss = env->segs[R_SS];
    ts->vm86_saved_regs.ds = env->segs[R_DS];
    ts->vm86_saved_regs.es = env->segs[R_ES];
    ts->vm86_saved_regs.fs = env->segs[R_FS];
    ts->vm86_saved_regs.gs = env->segs[R_GS];

    /* build vm86 CPU state */
    ts->v86flags = tswap32(target_v86->regs.eflags);
    env->eflags = (env->eflags & ~SAFE_MASK) | 
        (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;

    ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type);
    switch (ts->vm86plus.cpu_type) {
    case TARGET_CPU_286:
        ts->v86mask = 0;
        break;
    case TARGET_CPU_386:
        ts->v86mask = NT_MASK | IOPL_MASK;
        break;
    case TARGET_CPU_486:
        ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
        break;
    default:
        ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
        break;
    }

    env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
    env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
    env->regs[R_EDX] = tswap32(target_v86->regs.edx);
    env->regs[R_ESI] = tswap32(target_v86->regs.esi);
    env->regs[R_EDI] = tswap32(target_v86->regs.edi);
    env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
    env->regs[R_ESP] = tswap32(target_v86->regs.esp);
    env->eip = tswap32(target_v86->regs.eip);
    cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
    cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
    cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
    cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
    cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
    cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
    ret = tswap32(target_v86->regs.eax); /* eax will be restored at
                                            the end of the syscall */
    memcpy(&ts->vm86plus.int_revectored, 
           &target_v86->int_revectored, 32);
    memcpy(&ts->vm86plus.int21_revectored, 
           &target_v86->int21_revectored, 32);
    ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags);
    memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab, 
           target_v86->vm86plus.vm86dbg_intxxtab, 32);
    
#ifdef DEBUG_VM86
    fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n", env->segs[R_CS], env->eip);
#endif
    /* now the virtual CPU is ready for vm86 execution ! */
 out:
    return ret;
}