aboutsummaryrefslogtreecommitdiff
path: root/linux-user/sparc/signal.c
blob: 4a0578ebf37b2ec924e300496b2a914bdf6dd07d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/*
 *  Emulation of Linux signals
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 */
#include "qemu/osdep.h"
#include "qemu.h"
#include "signal-common.h"
#include "linux-user/trace.h"

/* A Sparc register window */
struct target_reg_window {
    abi_ulong locals[8];
    abi_ulong ins[8];
};

/* A Sparc stack frame. */
struct target_stackf {
    /*
     * Since qemu does not reference fp or callers_pc directly,
     * it's simpler to treat fp and callers_pc as elements of ins[],
     * and then bundle locals[] and ins[] into reg_window.
     */
    struct target_reg_window win;
    /*
     * Similarly, bundle structptr and xxargs into xargs[].
     * This portion of the struct is part of the function call abi,
     * and belongs to the callee for spilling argument registers.
     */
    abi_ulong xargs[8];
};

struct target_siginfo_fpu {
    /* It is more convenient for qemu to move doubles, not singles. */
    uint64_t si_double_regs[16];
    uint32_t si_fsr;
    uint32_t si_fpqdepth;
    struct {
        uint32_t insn_addr;
        uint32_t insn;
    } si_fpqueue [16];
};

struct target_signal_frame {
    struct target_stackf ss;
    struct target_pt_regs regs;
    uint32_t si_mask;
    abi_ulong fpu_save;
    uint32_t insns[2] QEMU_ALIGNED(8);
    abi_ulong extramask[TARGET_NSIG_WORDS - 1];
    abi_ulong extra_size; /* Should be 0 */
    abi_ulong rwin_save;
};

static abi_ulong get_sigframe(struct target_sigaction *sa,
                              CPUSPARCState *env,
                              size_t framesize)
{
    abi_ulong sp = get_sp_from_cpustate(env);

    /*
     * If we are on the alternate signal stack and would overflow it, don't.
     * Return an always-bogus address instead so we will die with SIGSEGV.
     */
    if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
        return -1;
    }

    /* This is the X/Open sanctioned signal stack switching.  */
    sp = target_sigsp(sp, sa) - framesize;

    /*
     * Always align the stack frame.  This handles two cases.  First,
     * sigaltstack need not be mindful of platform specific stack
     * alignment.  Second, if we took this signal because the stack
     * is not aligned properly, we'd like to take the signal cleanly
     * and report that.
     */
    sp &= ~15UL;

    return sp;
}

static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
{
    int i;

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
    __put_user(sparc64_tstate(env), &regs->tstate);
    /* TODO: magic should contain PT_REG_MAGIC + %tt. */
    __put_user(0, &regs->magic);
#else
    __put_user(cpu_get_psr(env), &regs->psr);
#endif

    __put_user(env->pc, &regs->pc);
    __put_user(env->npc, &regs->npc);
    __put_user(env->y, &regs->y);

    for (i = 0; i < 8; i++) {
        __put_user(env->gregs[i], &regs->u_regs[i]);
    }
    for (i = 0; i < 8; i++) {
        __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
    }
}

static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
{
    int i;

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
    /* User can only change condition codes and %asi in %tstate. */
    uint64_t tstate;
    __get_user(tstate, &regs->tstate);
    cpu_put_ccr(env, tstate >> 32);
    env->asi = extract64(tstate, 24, 8);
#else
    /*
     * User can only change condition codes and FPU enabling in %psr.
     * But don't bother with FPU enabling, since a real kernel would
     * just re-enable the FPU upon the next fpu trap.
     */
    uint32_t psr;
    __get_user(psr, &regs->psr);
    env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC);
#endif

    /* Note that pc and npc are handled in the caller. */

    __get_user(env->y, &regs->y);

    for (i = 0; i < 8; i++) {
        __get_user(env->gregs[i], &regs->u_regs[i]);
    }
    for (i = 0; i < 8; i++) {
        __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
    }
}

static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
{
    int i;

    for (i = 0; i < 8; i++) {
        __put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
    }
    for (i = 0; i < 8; i++) {
        __put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
    }
}

static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
{
    int i;

    for (i = 0; i < 16; ++i) {
        __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
    }
    __put_user(env->fsr, &fpu->si_fsr);
    __put_user(0, &fpu->si_fpqdepth);
}

static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
{
    int i;

    for (i = 0; i < 16; ++i) {
        __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
    }
    __get_user(env->fsr, &fpu->si_fsr);
}

void setup_frame(int sig, struct target_sigaction *ka,
                 target_sigset_t *set, CPUSPARCState *env)
{
    abi_ulong sf_addr;
    struct target_signal_frame *sf;
    size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
    int i;

    /* 1. Make sure everything is clean */

    sf_addr = get_sigframe(ka, env, sf_size);
    trace_user_setup_frame(env, sf_addr);

    sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
    if (!sf) {
        goto sigsegv;
    }

    /* 2. Save the current process state */
    save_pt_regs(&sf->regs, env);
    __put_user(0, &sf->extra_size);

    save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
    __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);

    __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */

    __put_user(set->sig[0], &sf->si_mask);
    for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
        __put_user(set->sig[i + 1], &sf->extramask[i]);
    }

    save_reg_win(&sf->ss.win, env);

    /* 3. signal handler back-trampoline and parameters */
    env->regwptr[WREG_SP] = sf_addr;
    env->regwptr[WREG_O0] = sig;
    env->regwptr[WREG_O1] = sf_addr +
            offsetof(struct target_signal_frame, regs);
    env->regwptr[WREG_O2] = sf_addr +
            offsetof(struct target_signal_frame, regs);

    /* 4. signal handler */
    env->pc = ka->_sa_handler;
    env->npc = (env->pc + 4);
    /* 5. return to kernel instructions */
    if (ka->ka_restorer) {
        env->regwptr[WREG_O7] = ka->ka_restorer;
    } else {
        uint32_t val32;

        env->regwptr[WREG_O7] = sf_addr +
                offsetof(struct target_signal_frame, insns) - 2 * 4;

        /* mov __NR_sigreturn, %g1 */
        val32 = 0x821020d8;
        __put_user(val32, &sf->insns[0]);

        /* t 0x10 */
        val32 = 0x91d02010;
        __put_user(val32, &sf->insns[1]);
    }
    unlock_user(sf, sf_addr, sf_size);
    return;
#if 0
sigill_and_return:
    force_sig(TARGET_SIGILL);
#endif
sigsegv:
    unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
    force_sigsegv(sig);
}

void setup_rt_frame(int sig, struct target_sigaction *ka,
                    target_siginfo_t *info,
                    target_sigset_t *set, CPUSPARCState *env)
{
    qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
}

long do_sigreturn(CPUSPARCState *env)
{
    abi_ulong sf_addr;
    struct target_signal_frame *sf;
    abi_ulong pc, npc, ptr;
    target_sigset_t set;
    sigset_t host_set;
    int i;

    sf_addr = env->regwptr[WREG_SP];
    trace_user_do_sigreturn(env, sf_addr);
    if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
        goto segv_and_exit;
    }

    /* 1. Make sure we are not getting garbage from the user */

    if (sf_addr & 3)
        goto segv_and_exit;

    __get_user(pc,  &sf->regs.pc);
    __get_user(npc, &sf->regs.npc);

    if ((pc | npc) & 3) {
        goto segv_and_exit;
    }

    /* 2. Restore the state */
    restore_pt_regs(&sf->regs, env);
    env->pc = pc;
    env->npc = npc;

    __get_user(ptr, &sf->fpu_save);
    if (ptr) {
        struct target_siginfo_fpu *fpu;
        if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
            goto segv_and_exit;
        }
        restore_fpu(fpu, env);
        unlock_user_struct(fpu, ptr, 0);
    }

    __get_user(ptr, &sf->rwin_save);
    if (ptr) {
        goto segv_and_exit;  /* TODO: restore_rwin */
    }

    __get_user(set.sig[0], &sf->si_mask);
    for (i = 1; i < TARGET_NSIG_WORDS; i++) {
        __get_user(set.sig[i], &sf->extramask[i - 1]);
    }

    target_to_host_sigset_internal(&host_set, &set);
    set_sigmask(&host_set);

    unlock_user_struct(sf, sf_addr, 0);
    return -TARGET_QEMU_ESIGRETURN;

segv_and_exit:
    unlock_user_struct(sf, sf_addr, 0);
    force_sig(TARGET_SIGSEGV);
    return -TARGET_QEMU_ESIGRETURN;
}

long do_rt_sigreturn(CPUSPARCState *env)
{
    trace_user_do_rt_sigreturn(env, 0);
    qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
    return -TARGET_ENOSYS;
}

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define SPARC_MC_TSTATE 0
#define SPARC_MC_PC 1
#define SPARC_MC_NPC 2
#define SPARC_MC_Y 3
#define SPARC_MC_G1 4
#define SPARC_MC_G2 5
#define SPARC_MC_G3 6
#define SPARC_MC_G4 7
#define SPARC_MC_G5 8
#define SPARC_MC_G6 9
#define SPARC_MC_G7 10
#define SPARC_MC_O0 11
#define SPARC_MC_O1 12
#define SPARC_MC_O2 13
#define SPARC_MC_O3 14
#define SPARC_MC_O4 15
#define SPARC_MC_O5 16
#define SPARC_MC_O6 17
#define SPARC_MC_O7 18
#define SPARC_MC_NGREG 19

typedef abi_ulong target_mc_greg_t;
typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];

struct target_mc_fq {
    abi_ulong mcfq_addr;
    uint32_t mcfq_insn;
};

/*
 * Note the manual 16-alignment; the kernel gets this because it
 * includes a "long double qregs[16]" in the mcpu_fregs union,
 * which we can't do.
 */
struct target_mc_fpu {
    union {
        uint32_t sregs[32];
        uint64_t dregs[32];
        //uint128_t qregs[16];
    } mcfpu_fregs;
    abi_ulong mcfpu_fsr;
    abi_ulong mcfpu_fprs;
    abi_ulong mcfpu_gsr;
    abi_ulong mcfpu_fq;
    unsigned char mcfpu_qcnt;
    unsigned char mcfpu_qentsz;
    unsigned char mcfpu_enab;
} __attribute__((aligned(16)));
typedef struct target_mc_fpu target_mc_fpu_t;

typedef struct {
    target_mc_gregset_t mc_gregs;
    target_mc_greg_t mc_fp;
    target_mc_greg_t mc_i7;
    target_mc_fpu_t mc_fpregs;
} target_mcontext_t;

struct target_ucontext {
    abi_ulong tuc_link;
    abi_ulong tuc_flags;
    target_sigset_t tuc_sigmask;
    target_mcontext_t tuc_mcontext;
};

/* {set, get}context() needed for 64-bit SparcLinux userland. */
void sparc64_set_context(CPUSPARCState *env)
{
    abi_ulong ucp_addr;
    struct target_ucontext *ucp;
    target_mc_gregset_t *grp;
    target_mc_fpu_t *fpup;
    abi_ulong pc, npc, tstate;
    unsigned int i;
    unsigned char fenab;

    ucp_addr = env->regwptr[WREG_O0];
    if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
        goto do_sigsegv;
    }
    grp  = &ucp->tuc_mcontext.mc_gregs;
    __get_user(pc, &((*grp)[SPARC_MC_PC]));
    __get_user(npc, &((*grp)[SPARC_MC_NPC]));
    if ((pc | npc) & 3) {
        goto do_sigsegv;
    }
    if (env->regwptr[WREG_O1]) {
        target_sigset_t target_set;
        sigset_t set;

        if (TARGET_NSIG_WORDS == 1) {
            __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
        } else {
            abi_ulong *src, *dst;
            src = ucp->tuc_sigmask.sig;
            dst = target_set.sig;
            for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
                __get_user(*dst, src);
            }
        }
        target_to_host_sigset_internal(&set, &target_set);
        set_sigmask(&set);
    }
    env->pc = pc;
    env->npc = npc;
    __get_user(env->y, &((*grp)[SPARC_MC_Y]));
    __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
    /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
    env->asi = (tstate >> 24) & 0xff;
    cpu_put_ccr(env, (tstate >> 32) & 0xff);
    __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
    __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
    __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
    __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
    __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
    __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
    /* Skip g7 as that's the thread register in userspace */

    /*
     * Note that unlike the kernel, we didn't need to mess with the
     * guest register window state to save it into a pt_regs to run
     * the kernel. So for us the guest's O regs are still in WREG_O*
     * (unlike the kernel which has put them in UREG_I* in a pt_regs)
     * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
     * need to be written back to userspace memory.
     */
    __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
    __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
    __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
    __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
    __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
    __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
    __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
    __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));

    __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
    __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));

    fpup = &ucp->tuc_mcontext.mc_fpregs;

    __get_user(fenab, &(fpup->mcfpu_enab));
    if (fenab) {
        abi_ulong fprs;

        /*
         * We use the FPRS from the guest only in deciding whether
         * to restore the upper, lower, or both banks of the FPU regs.
         * The kernel here writes the FPU register data into the
         * process's current_thread_info state and unconditionally
         * clears FPRS and TSTATE_PEF: this disables the FPU so that the
         * next FPU-disabled trap will copy the data out of
         * current_thread_info and into the real FPU registers.
         * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
         * so we always load the data directly into the FPU registers
         * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
         * Note that because we (and the kernel) always write zeroes for
         * the fenab and fprs in sparc64_get_context() none of this code
         * will execute unless the guest manually constructed or changed
         * the context structure.
         */
        __get_user(fprs, &(fpup->mcfpu_fprs));
        if (fprs & FPRS_DL) {
            for (i = 0; i < 16; i++) {
                __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
            }
        }
        if (fprs & FPRS_DU) {
            for (i = 16; i < 32; i++) {
                __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
            }
        }
        __get_user(env->fsr, &(fpup->mcfpu_fsr));
        __get_user(env->gsr, &(fpup->mcfpu_gsr));
    }
    unlock_user_struct(ucp, ucp_addr, 0);
    return;
do_sigsegv:
    unlock_user_struct(ucp, ucp_addr, 0);
    force_sig(TARGET_SIGSEGV);
}

void sparc64_get_context(CPUSPARCState *env)
{
    abi_ulong ucp_addr;
    struct target_ucontext *ucp;
    target_mc_gregset_t *grp;
    target_mcontext_t *mcp;
    int err;
    unsigned int i;
    target_sigset_t target_set;
    sigset_t set;

    ucp_addr = env->regwptr[WREG_O0];
    if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
        goto do_sigsegv;
    }

    memset(ucp, 0, sizeof(*ucp));

    mcp = &ucp->tuc_mcontext;
    grp = &mcp->mc_gregs;

    /* Skip over the trap instruction, first. */
    env->pc = env->npc;
    env->npc += 4;

    /* If we're only reading the signal mask then do_sigprocmask()
     * is guaranteed not to fail, which is important because we don't
     * have any way to signal a failure or restart this operation since
     * this is not a normal syscall.
     */
    err = do_sigprocmask(0, NULL, &set);
    assert(err == 0);
    host_to_target_sigset_internal(&target_set, &set);
    if (TARGET_NSIG_WORDS == 1) {
        __put_user(target_set.sig[0],
                   (abi_ulong *)&ucp->tuc_sigmask);
    } else {
        abi_ulong *src, *dst;
        src = target_set.sig;
        dst = ucp->tuc_sigmask.sig;
        for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
            __put_user(*src, dst);
        }
    }

    __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
    __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
    __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
    __put_user(env->y, &((*grp)[SPARC_MC_Y]));
    __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
    __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
    __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
    __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
    __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
    __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
    __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));

    /*
     * Note that unlike the kernel, we didn't need to mess with the
     * guest register window state to save it into a pt_regs to run
     * the kernel. So for us the guest's O regs are still in WREG_O*
     * (unlike the kernel which has put them in UREG_I* in a pt_regs)
     * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
     * need to be fished out of userspace memory.
     */
    __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
    __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
    __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
    __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
    __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
    __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
    __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
    __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));

    __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
    __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));

    /*
     * We don't write out the FPU state. This matches the kernel's
     * implementation (which has the code for doing this but
     * hidden behind an "if (fenab)" where fenab is always 0).
     */

    unlock_user_struct(ucp, ucp_addr, 1);
    return;
do_sigsegv:
    unlock_user_struct(ucp, ucp_addr, 1);
    force_sig(TARGET_SIGSEGV);
}
#endif