1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
#ifndef QEMU_H
#define QEMU_H
#include "thunk.h"
#include <signal.h>
#include <string.h>
#include "syscall_defs.h"
#include "cpu.h"
#include "syscall.h"
#include "target_signal.h"
#include "gdbstub.h"
/* This struct is used to hold certain information about the image.
* Basically, it replicates in user space what would be certain
* task_struct fields in the kernel
*/
struct image_info {
target_ulong load_addr;
unsigned long start_code;
unsigned long end_code;
unsigned long start_data;
unsigned long end_data;
unsigned long start_brk;
unsigned long brk;
unsigned long start_mmap;
unsigned long mmap;
unsigned long rss;
unsigned long start_stack;
unsigned long entry;
target_ulong code_offset;
target_ulong data_offset;
char **host_argv;
int personality;
};
#ifdef TARGET_I386
/* Information about the current linux thread */
struct vm86_saved_state {
uint32_t eax; /* return code */
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t esi;
uint32_t edi;
uint32_t ebp;
uint32_t esp;
uint32_t eflags;
uint32_t eip;
uint16_t cs, ss, ds, es, fs, gs;
};
#endif
#ifdef TARGET_ARM
/* FPU emulator */
#include "nwfpe/fpa11.h"
#endif
/* NOTE: we force a big alignment so that the stack stored after is
aligned too */
typedef struct TaskState {
struct TaskState *next;
#ifdef TARGET_ARM
/* FPA state */
FPA11 fpa;
int swi_errno;
#endif
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
target_ulong target_v86;
struct vm86_saved_state vm86_saved_regs;
struct target_vm86plus_struct vm86plus;
uint32_t v86flags;
uint32_t v86mask;
#endif
#ifdef TARGET_M68K
int sim_syscalls;
#endif
#if defined(TARGET_ARM) || defined(TARGET_M68K)
/* Extra fields for semihosted binaries. */
uint32_t stack_base;
uint32_t heap_base;
uint32_t heap_limit;
#endif
int used; /* non zero if used */
struct image_info *info;
uint8_t stack[0];
} __attribute__((aligned(16))) TaskState;
extern TaskState *first_task_state;
extern const char *qemu_uname_release;
/* ??? See if we can avoid exposing so much of the loader internals. */
/*
* MAX_ARG_PAGES defines the number of pages allocated for arguments
* and envelope for the new program. 32 should suffice, this gives
* a maximum env+arg of 128kB w/4KB pages!
*/
#define MAX_ARG_PAGES 32
/*
* This structure is used to hold the arguments that are
* used when loading binaries.
*/
struct linux_binprm {
char buf[128];
void *page[MAX_ARG_PAGES];
unsigned long p;
int fd;
int e_uid, e_gid;
int argc, envc;
char **argv;
char **envp;
char * filename; /* Name of binary */
};
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
target_ulong loader_build_argptr(int envc, int argc, target_ulong sp,
target_ulong stringp, int push_ptr);
int loader_exec(const char * filename, char ** argv, char ** envp,
struct target_pt_regs * regs, struct image_info *infop);
int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
struct image_info * info);
int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
struct image_info * info);
void memcpy_to_target(target_ulong dest, const void *src,
unsigned long len);
void target_set_brk(target_ulong new_brk);
target_long do_brk(target_ulong new_brk);
void syscall_init(void);
target_long do_syscall(void *cpu_env, int num, target_long arg1,
target_long arg2, target_long arg3, target_long arg4,
target_long arg5, target_long arg6);
void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
extern CPUState *global_env;
void cpu_loop(CPUState *env);
void init_paths(const char *prefix);
const char *path(const char *pathname);
extern int loglevel;
extern FILE *logfile;
/* signal.c */
void process_pending_signals(void *cpu_env);
void signal_init(void);
int queue_signal(int sig, target_siginfo_t *info);
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
long do_sigreturn(CPUState *env);
long do_rt_sigreturn(CPUState *env);
int do_sigaltstack(const struct target_sigaltstack *uss,
struct target_sigaltstack *uoss,
target_ulong sp);
#ifdef TARGET_I386
/* vm86.c */
void save_v86_state(CPUX86State *env);
void handle_vm86_trap(CPUX86State *env, int trapno);
void handle_vm86_fault(CPUX86State *env);
int do_vm86(CPUX86State *env, long subfunction, target_ulong v86_addr);
#elif defined(TARGET_SPARC64)
void sparc64_set_context(CPUSPARCState *env);
void sparc64_get_context(CPUSPARCState *env);
#endif
/* mmap.c */
int target_mprotect(target_ulong start, target_ulong len, int prot);
target_long target_mmap(target_ulong start, target_ulong len, int prot,
int flags, int fd, target_ulong offset);
int target_munmap(target_ulong start, target_ulong len);
target_long target_mremap(target_ulong old_addr, target_ulong old_size,
target_ulong new_size, unsigned long flags,
target_ulong new_addr);
int target_msync(target_ulong start, target_ulong len, int flags);
/* user access */
#define VERIFY_READ 0
#define VERIFY_WRITE 1
#define access_ok(type,addr,size) (1)
/* NOTE get_user and put_user use host addresses. */
#define __put_user(x,ptr)\
({\
int size = sizeof(*ptr);\
switch(size) {\
case 1:\
*(uint8_t *)(ptr) = (typeof(*ptr))(x);\
break;\
case 2:\
*(uint16_t *)(ptr) = tswap16((typeof(*ptr))(x));\
break;\
case 4:\
*(uint32_t *)(ptr) = tswap32((typeof(*ptr))(x));\
break;\
case 8:\
*(uint64_t *)(ptr) = tswap64((typeof(*ptr))(x));\
break;\
default:\
abort();\
}\
0;\
})
#define __get_user(x, ptr) \
({\
int size = sizeof(*ptr);\
switch(size) {\
case 1:\
x = (typeof(*ptr))*(uint8_t *)(ptr);\
break;\
case 2:\
x = (typeof(*ptr))tswap16(*(uint16_t *)(ptr));\
break;\
case 4:\
x = (typeof(*ptr))tswap32(*(uint32_t *)(ptr));\
break;\
case 8:\
x = (typeof(*ptr))tswap64(*(uint64_t *)(ptr));\
break;\
default:\
abort();\
}\
0;\
})
#define put_user(x,ptr)\
({\
int __ret;\
if (access_ok(VERIFY_WRITE, ptr, sizeof(*ptr)))\
__ret = __put_user(x, ptr);\
else\
__ret = -EFAULT;\
__ret;\
})
#define get_user(x,ptr)\
({\
int __ret;\
if (access_ok(VERIFY_READ, ptr, sizeof(*ptr)))\
__ret = __get_user(x, ptr);\
else\
__ret = -EFAULT;\
__ret;\
})
/* Functions for accessing guest memory. The tget and tput functions
read/write single values, byteswapping as neccessary. The lock_user
gets a pointer to a contiguous area of guest memory, but does not perform
and byteswapping. lock_user may return either a pointer to the guest
memory, or a temporary buffer. */
/* Lock an area of guest memory into the host. If copy is true then the
host area will have the same contents as the guest. */
static inline void *lock_user(target_ulong guest_addr, long len, int copy)
{
#ifdef DEBUG_REMAP
void *addr;
addr = malloc(len);
if (copy)
memcpy(addr, g2h(guest_addr), len);
else
memset(addr, 0, len);
return addr;
#else
return g2h(guest_addr);
#endif
}
/* Unlock an area of guest memory. The first LEN bytes must be flushed back
to guest memory. */
static inline void unlock_user(void *host_addr, target_ulong guest_addr,
long len)
{
#ifdef DEBUG_REMAP
if (host_addr == g2h(guest_addr))
return;
if (len > 0)
memcpy(g2h(guest_addr), host_addr, len);
free(host_addr);
#endif
}
/* Return the length of a string in target memory. */
static inline int target_strlen(target_ulong ptr)
{
return strlen(g2h(ptr));
}
/* Like lock_user but for null terminated strings. */
static inline void *lock_user_string(target_ulong guest_addr)
{
long len;
len = target_strlen(guest_addr) + 1;
return lock_user(guest_addr, len, 1);
}
/* Helper macros for locking/ulocking a target struct. */
#define lock_user_struct(host_ptr, guest_addr, copy) \
host_ptr = lock_user(guest_addr, sizeof(*host_ptr), copy)
#define unlock_user_struct(host_ptr, guest_addr, copy) \
unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
#define tget8(addr) ldub(addr)
#define tput8(addr, val) stb(addr, val)
#define tget16(addr) lduw(addr)
#define tput16(addr, val) stw(addr, val)
#define tget32(addr) ldl(addr)
#define tput32(addr, val) stl(addr, val)
#define tget64(addr) ldq(addr)
#define tput64(addr, val) stq(addr, val)
#if TARGET_LONG_BITS == 64
#define tgetl(addr) ldq(addr)
#define tputl(addr, val) stq(addr, val)
#else
#define tgetl(addr) ldl(addr)
#define tputl(addr, val) stl(addr, val)
#endif
#endif /* QEMU_H */
|