aboutsummaryrefslogtreecommitdiff
path: root/linux-user/main.c
blob: 889958b313e06693dbffaadec961b2a35245904f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*
 *  qemu main
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include "qemu.h"

#include "cpu-i386.h"

#define DEBUG_LOGFILE "/tmp/qemu.log"

FILE *logfile = NULL;
int loglevel;
static const char *interp_prefix = CONFIG_QEMU_PREFIX;

#ifdef __i386__
/* Force usage of an ELF interpreter even if it is an ELF shared
   object ! */
const char interp[] __attribute__((section(".interp"))) = "/lib/ld-linux.so.2";
#endif

/* for recent libc, we add these dummies symbol which are not declared
   when generating a linked object (bug in ld ?) */
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)
long __init_array_start[0];
long __init_array_end[0];
long __fini_array_start[0];
long __fini_array_end[0];
#endif

/* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
   we allocate a bigger stack. Need a better solution, for example
   by remapping the process stack directly at the right place */
unsigned long x86_stack_size = 512 * 1024;

void gemu_log(const char *fmt, ...)
{
    va_list ap;

    va_start(ap, fmt);
    vfprintf(stderr, fmt, ap);
    va_end(ap);
}

#ifdef TARGET_I386
/***********************************************************/
/* CPUX86 core interface */

void cpu_x86_outb(CPUX86State *env, int addr, int val)
{
    fprintf(stderr, "outb: port=0x%04x, data=%02x\n", addr, val);
}

void cpu_x86_outw(CPUX86State *env, int addr, int val)
{
    fprintf(stderr, "outw: port=0x%04x, data=%04x\n", addr, val);
}

void cpu_x86_outl(CPUX86State *env, int addr, int val)
{
    fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val);
}

int cpu_x86_inb(CPUX86State *env, int addr)
{
    fprintf(stderr, "inb: port=0x%04x\n", addr);
    return 0;
}

int cpu_x86_inw(CPUX86State *env, int addr)
{
    fprintf(stderr, "inw: port=0x%04x\n", addr);
    return 0;
}

int cpu_x86_inl(CPUX86State *env, int addr)
{
    fprintf(stderr, "inl: port=0x%04x\n", addr);
    return 0;
}

static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 
                     int flags)
{
    unsigned int e1, e2;
    e1 = (addr << 16) | (limit & 0xffff);
    e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
    e2 |= flags;
    stl((uint8_t *)ptr, e1);
    stl((uint8_t *)ptr + 4, e2);
}

static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 
                     unsigned long addr, unsigned int sel)
{
    unsigned int e1, e2;
    e1 = (addr & 0xffff) | (sel << 16);
    e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
    stl((uint8_t *)ptr, e1);
    stl((uint8_t *)ptr + 4, e2);
}

uint64_t gdt_table[6];
uint64_t idt_table[256];

/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl)
{
    set_gate(idt_table + n, 0, dpl, 0, 0);
}

void cpu_loop(CPUX86State *env)
{
    int trapnr;
    uint8_t *pc;
    target_siginfo_t info;

    for(;;) {
        trapnr = cpu_x86_exec(env);
        switch(trapnr) {
        case 0x80:
            /* linux syscall */
            env->regs[R_EAX] = do_syscall(env, 
                                          env->regs[R_EAX], 
                                          env->regs[R_EBX],
                                          env->regs[R_ECX],
                                          env->regs[R_EDX],
                                          env->regs[R_ESI],
                                          env->regs[R_EDI],
                                          env->regs[R_EBP]);
            break;
        case EXCP0B_NOSEG:
        case EXCP0C_STACK:
            info.si_signo = SIGBUS;
            info.si_errno = 0;
            info.si_code = TARGET_SI_KERNEL;
            info._sifields._sigfault._addr = 0;
            queue_signal(info.si_signo, &info);
            break;
        case EXCP0D_GPF:
            if (env->eflags & VM_MASK) {
                handle_vm86_fault(env);
            } else {
                info.si_signo = SIGSEGV;
                info.si_errno = 0;
                info.si_code = TARGET_SI_KERNEL;
                info._sifields._sigfault._addr = 0;
                queue_signal(info.si_signo, &info);
            }
            break;
        case EXCP0E_PAGE:
            info.si_signo = SIGSEGV;
            info.si_errno = 0;
            if (!(env->error_code & 1))
                info.si_code = TARGET_SEGV_MAPERR;
            else
                info.si_code = TARGET_SEGV_ACCERR;
            info._sifields._sigfault._addr = env->cr2;
            queue_signal(info.si_signo, &info);
            break;
        case EXCP00_DIVZ:
            if (env->eflags & VM_MASK) {
                handle_vm86_trap(env, trapnr);
            } else {
                /* division by zero */
                info.si_signo = SIGFPE;
                info.si_errno = 0;
                info.si_code = TARGET_FPE_INTDIV;
                info._sifields._sigfault._addr = env->eip;
                queue_signal(info.si_signo, &info);
            }
            break;
        case EXCP01_SSTP:
        case EXCP03_INT3:
            if (env->eflags & VM_MASK) {
                handle_vm86_trap(env, trapnr);
            } else {
                info.si_signo = SIGTRAP;
                info.si_errno = 0;
                if (trapnr == EXCP01_SSTP) {
                    info.si_code = TARGET_TRAP_BRKPT;
                    info._sifields._sigfault._addr = env->eip;
                } else {
                    info.si_code = TARGET_SI_KERNEL;
                    info._sifields._sigfault._addr = 0;
                }
                queue_signal(info.si_signo, &info);
            }
            break;
        case EXCP04_INTO:
        case EXCP05_BOUND:
            if (env->eflags & VM_MASK) {
                handle_vm86_trap(env, trapnr);
            } else {
                info.si_signo = SIGSEGV;
                info.si_errno = 0;
                info.si_code = TARGET_SI_KERNEL;
                info._sifields._sigfault._addr = 0;
                queue_signal(info.si_signo, &info);
            }
            break;
        case EXCP06_ILLOP:
            info.si_signo = SIGILL;
            info.si_errno = 0;
            info.si_code = TARGET_ILL_ILLOPN;
            info._sifields._sigfault._addr = env->eip;
            queue_signal(info.si_signo, &info);
            break;
        case EXCP_INTERRUPT:
            /* just indicate that signals should be handled asap */
            break;
        default:
            pc = env->seg_cache[R_CS].base + env->eip;
            fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 
                    (long)pc, trapnr);
            abort();
        }
        process_pending_signals(env);
    }
}
#endif

#ifdef TARGET_ARM

#define ARM_SYSCALL_BASE	0x900000

void cpu_loop(CPUARMState *env)
{
    int trapnr;
    unsigned int n, insn;
    target_siginfo_t info;
    
    for(;;) {
        trapnr = cpu_arm_exec(env);
        switch(trapnr) {
        case EXCP_UDEF:
            info.si_signo = SIGILL;
            info.si_errno = 0;
            info.si_code = TARGET_ILL_ILLOPN;
            info._sifields._sigfault._addr = env->regs[15];
            queue_signal(info.si_signo, &info);
            break;
        case EXCP_SWI:
            {
                /* system call */
                insn = ldl((void *)(env->regs[15] - 4));
                n = insn & 0xffffff;
                if (n >= ARM_SYSCALL_BASE) {
                    /* linux syscall */
                    n -= ARM_SYSCALL_BASE;
                    env->regs[0] = do_syscall(env, 
                                              n, 
                                              env->regs[0],
                                              env->regs[1],
                                              env->regs[2],
                                              env->regs[3],
                                              env->regs[4],
                                              0);
                } else {
                    goto error;
                }
            }
            break;
        default:
        error:
            fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 
                    trapnr);
            cpu_arm_dump_state(env, stderr, 0);
            abort();
        }
        process_pending_signals(env);
    }
}

#endif

void usage(void)
{
    printf("qemu version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
           "usage: qemu [-h] [-d] [-L path] [-s size] program [arguments...]\n"
           "Linux CPU emulator (compiled for %s emulation)\n"
           "\n"
           "-h           print this help\n"
           "-L path      set the elf interpreter prefix (default=%s)\n"
           "-s size      set the stack size in bytes (default=%ld)\n"
           "\n"
           "debug options:\n"
           "-d           activate log (logfile=%s)\n"
           "-p pagesize  set the host page size to 'pagesize'\n",
           TARGET_ARCH,
           interp_prefix, 
           x86_stack_size,
           DEBUG_LOGFILE);
    _exit(1);
}

/* XXX: currently only used for async signals (see signal.c) */
CPUState *global_env;
/* used to free thread contexts */
TaskState *first_task_state;

int main(int argc, char **argv)
{
    const char *filename;
    struct target_pt_regs regs1, *regs = &regs1;
    struct image_info info1, *info = &info1;
    TaskState ts1, *ts = &ts1;
    CPUState *env;
    int optind;
    const char *r;
    
    if (argc <= 1)
        usage();

    loglevel = 0;
    optind = 1;
    for(;;) {
        if (optind >= argc)
            break;
        r = argv[optind];
        if (r[0] != '-')
            break;
        optind++;
        r++;
        if (!strcmp(r, "-")) {
            break;
        } else if (!strcmp(r, "d")) {
            loglevel = 1;
        } else if (!strcmp(r, "s")) {
            r = argv[optind++];
            x86_stack_size = strtol(r, (char **)&r, 0);
            if (x86_stack_size <= 0)
                usage();
            if (*r == 'M')
                x86_stack_size *= 1024 * 1024;
            else if (*r == 'k' || *r == 'K')
                x86_stack_size *= 1024;
        } else if (!strcmp(r, "L")) {
            interp_prefix = argv[optind++];
        } else if (!strcmp(r, "p")) {
            host_page_size = atoi(argv[optind++]);
            if (host_page_size == 0 ||
                (host_page_size & (host_page_size - 1)) != 0) {
                fprintf(stderr, "page size must be a power of two\n");
                exit(1);
            }
        } else {
            usage();
        }
    }
    if (optind >= argc)
        usage();
    filename = argv[optind];

    /* init debug */
    if (loglevel) {
        logfile = fopen(DEBUG_LOGFILE, "w");
        if (!logfile) {
            perror(DEBUG_LOGFILE);
            _exit(1);
        }
        setvbuf(logfile, NULL, _IOLBF, 0);
    }

    /* Zero out regs */
    memset(regs, 0, sizeof(struct target_pt_regs));

    /* Zero out image_info */
    memset(info, 0, sizeof(struct image_info));

    /* Scan interp_prefix dir for replacement files. */
    init_paths(interp_prefix);

    /* NOTE: we need to init the CPU at this stage to get the
       host_page_size */
    env = cpu_init();

    if (elf_exec(filename, argv+optind, environ, regs, info) != 0) {
	printf("Error loading %s\n", filename);
	_exit(1);
    }
    
    if (loglevel) {
        page_dump(logfile);
    
        fprintf(logfile, "start_brk   0x%08lx\n" , info->start_brk);
        fprintf(logfile, "end_code    0x%08lx\n" , info->end_code);
        fprintf(logfile, "start_code  0x%08lx\n" , info->start_code);
        fprintf(logfile, "end_data    0x%08lx\n" , info->end_data);
        fprintf(logfile, "start_stack 0x%08lx\n" , info->start_stack);
        fprintf(logfile, "brk         0x%08lx\n" , info->brk);
        fprintf(logfile, "entry       0x%08lx\n" , info->entry);
    }

    target_set_brk((char *)info->brk);
    syscall_init();
    signal_init();

    global_env = env;

    /* build Task State */
    memset(ts, 0, sizeof(TaskState));
    env->opaque = ts;
    ts->used = 1;
    
#if defined(TARGET_I386)
    /* linux register setup */
    env->regs[R_EAX] = regs->eax;
    env->regs[R_EBX] = regs->ebx;
    env->regs[R_ECX] = regs->ecx;
    env->regs[R_EDX] = regs->edx;
    env->regs[R_ESI] = regs->esi;
    env->regs[R_EDI] = regs->edi;
    env->regs[R_EBP] = regs->ebp;
    env->regs[R_ESP] = regs->esp;
    env->eip = regs->eip;

    /* linux interrupt setup */
    env->idt.base = (void *)idt_table;
    env->idt.limit = sizeof(idt_table) - 1;
    set_idt(0, 0);
    set_idt(1, 0);
    set_idt(2, 0);
    set_idt(3, 3);
    set_idt(4, 3);
    set_idt(5, 3);
    set_idt(6, 0);
    set_idt(7, 0);
    set_idt(8, 0);
    set_idt(9, 0);
    set_idt(10, 0);
    set_idt(11, 0);
    set_idt(12, 0);
    set_idt(13, 0);
    set_idt(14, 0);
    set_idt(15, 0);
    set_idt(16, 0);
    set_idt(17, 0);
    set_idt(18, 0);
    set_idt(19, 0);
    set_idt(0x80, 3);

    /* linux segment setup */
    env->gdt.base = (void *)gdt_table;
    env->gdt.limit = sizeof(gdt_table) - 1;
    write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
             DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 
             (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
    write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
             DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 
             (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
    cpu_x86_load_seg(env, R_CS, __USER_CS);
    cpu_x86_load_seg(env, R_DS, __USER_DS);
    cpu_x86_load_seg(env, R_ES, __USER_DS);
    cpu_x86_load_seg(env, R_SS, __USER_DS);
    cpu_x86_load_seg(env, R_FS, __USER_DS);
    cpu_x86_load_seg(env, R_GS, __USER_DS);
#elif defined(TARGET_ARM)
    {
        int i;
        for(i = 0; i < 16; i++) {
            env->regs[i] = regs->uregs[i];
        }
        env->cpsr = regs->uregs[16];
    }
#else
#error unsupported target CPU
#endif

    cpu_loop(env);
    /* never exits */
    return 0;
}