1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
|
/*
* QEMU CPU model
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#ifndef QEMU_CPU_H
#define QEMU_CPU_H
#include "hw/qdev-core.h"
#include "disas/bfd.h"
#include "exec/hwaddr.h"
#include "exec/memattrs.h"
#include "qemu/bitmap.h"
#include "qemu/queue.h"
#include "qemu/thread.h"
#include "trace/generated-events.h"
typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
void *opaque);
/**
* vaddr:
* Type wide enough to contain any #target_ulong virtual address.
*/
typedef uint64_t vaddr;
#define VADDR_PRId PRId64
#define VADDR_PRIu PRIu64
#define VADDR_PRIo PRIo64
#define VADDR_PRIx PRIx64
#define VADDR_PRIX PRIX64
#define VADDR_MAX UINT64_MAX
/**
* SECTION:cpu
* @section_id: QEMU-cpu
* @title: CPU Class
* @short_description: Base class for all CPUs
*/
#define TYPE_CPU "cpu"
/* Since this macro is used a lot in hot code paths and in conjunction with
* FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
* an unchecked cast.
*/
#define CPU(obj) ((CPUState *)(obj))
#define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
#define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
typedef enum MMUAccessType {
MMU_DATA_LOAD = 0,
MMU_DATA_STORE = 1,
MMU_INST_FETCH = 2
} MMUAccessType;
typedef struct CPUWatchpoint CPUWatchpoint;
typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
bool is_write, bool is_exec, int opaque,
unsigned size);
struct TranslationBlock;
/**
* CPUClass:
* @class_by_name: Callback to map -cpu command line model name to an
* instantiatable CPU type.
* @parse_features: Callback to parse command line arguments.
* @reset: Callback to reset the #CPUState to its initial state.
* @reset_dump_flags: #CPUDumpFlags to use for reset logging.
* @has_work: Callback for checking if there is work to do.
* @do_interrupt: Callback for interrupt handling.
* @do_unassigned_access: Callback for unassigned access handling.
* @do_unaligned_access: Callback for unaligned access handling, if
* the target defines #ALIGNED_ONLY.
* @virtio_is_big_endian: Callback to return %true if a CPU which supports
* runtime configurable endianness is currently big-endian. Non-configurable
* CPUs can use the default implementation of this method. This method should
* not be used by any callers other than the pre-1.0 virtio devices.
* @memory_rw_debug: Callback for GDB memory access.
* @dump_state: Callback for dumping state.
* @dump_statistics: Callback for dumping statistics.
* @get_arch_id: Callback for getting architecture-dependent CPU ID.
* @get_paging_enabled: Callback for inquiring whether paging is enabled.
* @get_memory_mapping: Callback for obtaining the memory mappings.
* @set_pc: Callback for setting the Program Counter register.
* @synchronize_from_tb: Callback for synchronizing state from a TCG
* #TranslationBlock.
* @handle_mmu_fault: Callback for handling an MMU fault.
* @get_phys_page_debug: Callback for obtaining a physical address.
* @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
* associated memory transaction attributes to use for the access.
* CPUs which use memory transaction attributes should implement this
* instead of get_phys_page_debug.
* @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
* a memory access with the specified memory transaction attributes.
* @gdb_read_register: Callback for letting GDB read a register.
* @gdb_write_register: Callback for letting GDB write a register.
* @debug_check_watchpoint: Callback: return true if the architectural
* watchpoint whose address has matched should really fire.
* @debug_excp_handler: Callback for handling debug exceptions.
* @write_elf64_note: Callback for writing a CPU-specific ELF note to a
* 64-bit VM coredump.
* @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
* note to a 32-bit VM coredump.
* @write_elf32_note: Callback for writing a CPU-specific ELF note to a
* 32-bit VM coredump.
* @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
* note to a 32-bit VM coredump.
* @vmsd: State description for migration.
* @gdb_num_core_regs: Number of core registers accessible to GDB.
* @gdb_core_xml_file: File name for core registers GDB XML description.
* @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
* before the insn which triggers a watchpoint rather than after it.
* @gdb_arch_name: Optional callback that returns the architecture name known
* to GDB. The caller must free the returned string with g_free.
* @cpu_exec_enter: Callback for cpu_exec preparation.
* @cpu_exec_exit: Callback for cpu_exec cleanup.
* @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
* @disas_set_info: Setup architecture specific components of disassembly info
*
* Represents a CPU family or model.
*/
typedef struct CPUClass {
/*< private >*/
DeviceClass parent_class;
/*< public >*/
ObjectClass *(*class_by_name)(const char *cpu_model);
void (*parse_features)(const char *typename, char *str, Error **errp);
void (*reset)(CPUState *cpu);
int reset_dump_flags;
bool (*has_work)(CPUState *cpu);
void (*do_interrupt)(CPUState *cpu);
CPUUnassignedAccess do_unassigned_access;
void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr);
bool (*virtio_is_big_endian)(CPUState *cpu);
int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
uint8_t *buf, int len, bool is_write);
void (*dump_state)(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
int flags);
void (*dump_statistics)(CPUState *cpu, FILE *f,
fprintf_function cpu_fprintf, int flags);
int64_t (*get_arch_id)(CPUState *cpu);
bool (*get_paging_enabled)(const CPUState *cpu);
void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
Error **errp);
void (*set_pc)(CPUState *cpu, vaddr value);
void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
int (*handle_mmu_fault)(CPUState *cpu, vaddr address, int rw,
int mmu_index);
hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
MemTxAttrs *attrs);
int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
void (*debug_excp_handler)(CPUState *cpu);
int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
int cpuid, void *opaque);
int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
void *opaque);
int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
int cpuid, void *opaque);
int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
void *opaque);
const struct VMStateDescription *vmsd;
int gdb_num_core_regs;
const char *gdb_core_xml_file;
gchar * (*gdb_arch_name)(CPUState *cpu);
bool gdb_stop_before_watchpoint;
void (*cpu_exec_enter)(CPUState *cpu);
void (*cpu_exec_exit)(CPUState *cpu);
bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
} CPUClass;
#ifdef HOST_WORDS_BIGENDIAN
typedef struct icount_decr_u16 {
uint16_t high;
uint16_t low;
} icount_decr_u16;
#else
typedef struct icount_decr_u16 {
uint16_t low;
uint16_t high;
} icount_decr_u16;
#endif
typedef struct CPUBreakpoint {
vaddr pc;
int flags; /* BP_* */
QTAILQ_ENTRY(CPUBreakpoint) entry;
} CPUBreakpoint;
struct CPUWatchpoint {
vaddr vaddr;
vaddr len;
vaddr hitaddr;
MemTxAttrs hitattrs;
int flags; /* BP_* */
QTAILQ_ENTRY(CPUWatchpoint) entry;
};
struct KVMState;
struct kvm_run;
#define TB_JMP_CACHE_BITS 12
#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
/* work queue */
typedef void (*run_on_cpu_func)(CPUState *cpu, void *data);
struct qemu_work_item;
/**
* CPUState:
* @cpu_index: CPU index (informative).
* @nr_cores: Number of cores within this CPU package.
* @nr_threads: Number of threads within this CPU.
* @numa_node: NUMA node this CPU is belonging to.
* @host_tid: Host thread ID.
* @running: #true if CPU is currently running (lockless).
* @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
* valid under cpu_list_lock.
* @created: Indicates whether the CPU thread has been successfully created.
* @interrupt_request: Indicates a pending interrupt request.
* @halted: Nonzero if the CPU is in suspended state.
* @stop: Indicates a pending stop request.
* @stopped: Indicates the CPU has been artificially stopped.
* @unplug: Indicates a pending CPU unplug request.
* @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
* @tcg_exit_req: Set to force TCG to stop executing linked TBs for this
* CPU and return to its top level loop.
* @singlestep_enabled: Flags for single-stepping.
* @icount_extra: Instructions until next timer event.
* @icount_decr: Number of cycles left, with interrupt flag in high bit.
* This allows a single read-compare-cbranch-write sequence to test
* for both decrementer underflow and exceptions.
* @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
* requires that IO only be performed on the last instruction of a TB
* so that interrupts take effect immediately.
* @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
* AddressSpaces this CPU has)
* @num_ases: number of CPUAddressSpaces in @cpu_ases
* @as: Pointer to the first AddressSpace, for the convenience of targets which
* only have a single AddressSpace
* @env_ptr: Pointer to subclass-specific CPUArchState field.
* @gdb_regs: Additional GDB registers.
* @gdb_num_regs: Number of total registers accessible to GDB.
* @gdb_num_g_regs: Number of registers in GDB 'g' packets.
* @next_cpu: Next CPU sharing TB cache.
* @opaque: User data.
* @mem_io_pc: Host Program Counter at which the memory was accessed.
* @mem_io_vaddr: Target virtual address at which the memory was accessed.
* @kvm_fd: vCPU file descriptor for KVM.
* @work_mutex: Lock to prevent multiple access to queued_work_*.
* @queued_work_first: First asynchronous work pending.
* @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
*
* State of one CPU core or thread.
*/
struct CPUState {
/*< private >*/
DeviceState parent_obj;
/*< public >*/
int nr_cores;
int nr_threads;
int numa_node;
struct QemuThread *thread;
#ifdef _WIN32
HANDLE hThread;
#endif
int thread_id;
uint32_t host_tid;
bool running, has_waiter;
struct QemuCond *halt_cond;
bool thread_kicked;
bool created;
bool stop;
bool stopped;
bool unplug;
bool crash_occurred;
bool exit_request;
uint32_t interrupt_request;
int singlestep_enabled;
int64_t icount_extra;
sigjmp_buf jmp_env;
QemuMutex work_mutex;
struct qemu_work_item *queued_work_first, *queued_work_last;
CPUAddressSpace *cpu_ases;
int num_ases;
AddressSpace *as;
MemoryRegion *memory;
void *env_ptr; /* CPUArchState */
struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
struct GDBRegisterState *gdb_regs;
int gdb_num_regs;
int gdb_num_g_regs;
QTAILQ_ENTRY(CPUState) node;
/* ice debug support */
QTAILQ_HEAD(breakpoints_head, CPUBreakpoint) breakpoints;
QTAILQ_HEAD(watchpoints_head, CPUWatchpoint) watchpoints;
CPUWatchpoint *watchpoint_hit;
void *opaque;
/* In order to avoid passing too many arguments to the MMIO helpers,
* we store some rarely used information in the CPU context.
*/
uintptr_t mem_io_pc;
vaddr mem_io_vaddr;
int kvm_fd;
bool kvm_vcpu_dirty;
struct KVMState *kvm_state;
struct kvm_run *kvm_run;
/* Used for events with 'vcpu' and *without* the 'disabled' properties */
DECLARE_BITMAP(trace_dstate, TRACE_VCPU_EVENT_COUNT);
/* TODO Move common fields from CPUArchState here. */
int cpu_index; /* used by alpha TCG */
uint32_t halted; /* used by alpha, cris, ppc TCG */
union {
uint32_t u32;
icount_decr_u16 u16;
} icount_decr;
uint32_t can_do_io;
int32_t exception_index; /* used by m68k TCG */
/* Used to keep track of an outstanding cpu throttle thread for migration
* autoconverge
*/
bool throttle_thread_scheduled;
/* Note that this is accessed at the start of every TB via a negative
offset from AREG0. Leave this field at the end so as to make the
(absolute value) offset as small as possible. This reduces code
size, especially for hosts without large memory offsets. */
uint32_t tcg_exit_req;
};
QTAILQ_HEAD(CPUTailQ, CPUState);
extern struct CPUTailQ cpus;
#define CPU_NEXT(cpu) QTAILQ_NEXT(cpu, node)
#define CPU_FOREACH(cpu) QTAILQ_FOREACH(cpu, &cpus, node)
#define CPU_FOREACH_SAFE(cpu, next_cpu) \
QTAILQ_FOREACH_SAFE(cpu, &cpus, node, next_cpu)
#define CPU_FOREACH_REVERSE(cpu) \
QTAILQ_FOREACH_REVERSE(cpu, &cpus, CPUTailQ, node)
#define first_cpu QTAILQ_FIRST(&cpus)
extern __thread CPUState *current_cpu;
/**
* cpu_paging_enabled:
* @cpu: The CPU whose state is to be inspected.
*
* Returns: %true if paging is enabled, %false otherwise.
*/
bool cpu_paging_enabled(const CPUState *cpu);
/**
* cpu_get_memory_mapping:
* @cpu: The CPU whose memory mappings are to be obtained.
* @list: Where to write the memory mappings to.
* @errp: Pointer for reporting an #Error.
*/
void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
Error **errp);
/**
* cpu_write_elf64_note:
* @f: pointer to a function that writes memory to a file
* @cpu: The CPU whose memory is to be dumped
* @cpuid: ID number of the CPU
* @opaque: pointer to the CPUState struct
*/
int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
int cpuid, void *opaque);
/**
* cpu_write_elf64_qemunote:
* @f: pointer to a function that writes memory to a file
* @cpu: The CPU whose memory is to be dumped
* @cpuid: ID number of the CPU
* @opaque: pointer to the CPUState struct
*/
int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
void *opaque);
/**
* cpu_write_elf32_note:
* @f: pointer to a function that writes memory to a file
* @cpu: The CPU whose memory is to be dumped
* @cpuid: ID number of the CPU
* @opaque: pointer to the CPUState struct
*/
int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
int cpuid, void *opaque);
/**
* cpu_write_elf32_qemunote:
* @f: pointer to a function that writes memory to a file
* @cpu: The CPU whose memory is to be dumped
* @cpuid: ID number of the CPU
* @opaque: pointer to the CPUState struct
*/
int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
void *opaque);
/**
* CPUDumpFlags:
* @CPU_DUMP_CODE:
* @CPU_DUMP_FPU: dump FPU register state, not just integer
* @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
*/
enum CPUDumpFlags {
CPU_DUMP_CODE = 0x00010000,
CPU_DUMP_FPU = 0x00020000,
CPU_DUMP_CCOP = 0x00040000,
};
/**
* cpu_dump_state:
* @cpu: The CPU whose state is to be dumped.
* @f: File to dump to.
* @cpu_fprintf: Function to dump with.
* @flags: Flags what to dump.
*
* Dumps CPU state.
*/
void cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
int flags);
/**
* cpu_dump_statistics:
* @cpu: The CPU whose state is to be dumped.
* @f: File to dump to.
* @cpu_fprintf: Function to dump with.
* @flags: Flags what to dump.
*
* Dumps CPU statistics.
*/
void cpu_dump_statistics(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
int flags);
#ifndef CONFIG_USER_ONLY
/**
* cpu_get_phys_page_attrs_debug:
* @cpu: The CPU to obtain the physical page address for.
* @addr: The virtual address.
* @attrs: Updated on return with the memory transaction attributes to use
* for this access.
*
* Obtains the physical page corresponding to a virtual one, together
* with the corresponding memory transaction attributes to use for the access.
* Use it only for debugging because no protection checks are done.
*
* Returns: Corresponding physical page address or -1 if no page found.
*/
static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
MemTxAttrs *attrs)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
if (cc->get_phys_page_attrs_debug) {
return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
}
/* Fallback for CPUs which don't implement the _attrs_ hook */
*attrs = MEMTXATTRS_UNSPECIFIED;
return cc->get_phys_page_debug(cpu, addr);
}
/**
* cpu_get_phys_page_debug:
* @cpu: The CPU to obtain the physical page address for.
* @addr: The virtual address.
*
* Obtains the physical page corresponding to a virtual one.
* Use it only for debugging because no protection checks are done.
*
* Returns: Corresponding physical page address or -1 if no page found.
*/
static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
{
MemTxAttrs attrs = {};
return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
}
/** cpu_asidx_from_attrs:
* @cpu: CPU
* @attrs: memory transaction attributes
*
* Returns the address space index specifying the CPU AddressSpace
* to use for a memory access with the given transaction attributes.
*/
static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
if (cc->asidx_from_attrs) {
return cc->asidx_from_attrs(cpu, attrs);
}
return 0;
}
#endif
/**
* cpu_list_add:
* @cpu: The CPU to be added to the list of CPUs.
*/
void cpu_list_add(CPUState *cpu);
/**
* cpu_list_remove:
* @cpu: The CPU to be removed from the list of CPUs.
*/
void cpu_list_remove(CPUState *cpu);
/**
* cpu_reset:
* @cpu: The CPU whose state is to be reset.
*/
void cpu_reset(CPUState *cpu);
/**
* cpu_class_by_name:
* @typename: The CPU base type.
* @cpu_model: The model string without any parameters.
*
* Looks up a CPU #ObjectClass matching name @cpu_model.
*
* Returns: A #CPUClass or %NULL if not matching class is found.
*/
ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
/**
* cpu_generic_init:
* @typename: The CPU base type.
* @cpu_model: The model string including optional parameters.
*
* Instantiates a CPU, processes optional parameters and realizes the CPU.
*
* Returns: A #CPUState or %NULL if an error occurred.
*/
CPUState *cpu_generic_init(const char *typename, const char *cpu_model);
/**
* cpu_has_work:
* @cpu: The vCPU to check.
*
* Checks whether the CPU has work to do.
*
* Returns: %true if the CPU has work, %false otherwise.
*/
static inline bool cpu_has_work(CPUState *cpu)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
g_assert(cc->has_work);
return cc->has_work(cpu);
}
/**
* qemu_cpu_is_self:
* @cpu: The vCPU to check against.
*
* Checks whether the caller is executing on the vCPU thread.
*
* Returns: %true if called from @cpu's thread, %false otherwise.
*/
bool qemu_cpu_is_self(CPUState *cpu);
/**
* qemu_cpu_kick:
* @cpu: The vCPU to kick.
*
* Kicks @cpu's thread.
*/
void qemu_cpu_kick(CPUState *cpu);
/**
* cpu_is_stopped:
* @cpu: The CPU to check.
*
* Checks whether the CPU is stopped.
*
* Returns: %true if run state is not running or if artificially stopped;
* %false otherwise.
*/
bool cpu_is_stopped(CPUState *cpu);
/**
* do_run_on_cpu:
* @cpu: The vCPU to run on.
* @func: The function to be executed.
* @data: Data to pass to the function.
* @mutex: Mutex to release while waiting for @func to run.
*
* Used internally in the implementation of run_on_cpu.
*/
void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data,
QemuMutex *mutex);
/**
* run_on_cpu:
* @cpu: The vCPU to run on.
* @func: The function to be executed.
* @data: Data to pass to the function.
*
* Schedules the function @func for execution on the vCPU @cpu.
*/
void run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
/**
* async_run_on_cpu:
* @cpu: The vCPU to run on.
* @func: The function to be executed.
* @data: Data to pass to the function.
*
* Schedules the function @func for execution on the vCPU @cpu asynchronously.
*/
void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
/**
* async_safe_run_on_cpu:
* @cpu: The vCPU to run on.
* @func: The function to be executed.
* @data: Data to pass to the function.
*
* Schedules the function @func for execution on the vCPU @cpu asynchronously,
* while all other vCPUs are sleeping.
*
* Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
* BQL.
*/
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
/**
* qemu_get_cpu:
* @index: The CPUState@cpu_index value of the CPU to obtain.
*
* Gets a CPU matching @index.
*
* Returns: The CPU or %NULL if there is no matching CPU.
*/
CPUState *qemu_get_cpu(int index);
/**
* cpu_exists:
* @id: Guest-exposed CPU ID to lookup.
*
* Search for CPU with specified ID.
*
* Returns: %true - CPU is found, %false - CPU isn't found.
*/
bool cpu_exists(int64_t id);
/**
* cpu_throttle_set:
* @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
*
* Throttles all vcpus by forcing them to sleep for the given percentage of
* time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
* (example: 10ms sleep for every 30ms awake).
*
* cpu_throttle_set can be called as needed to adjust new_throttle_pct.
* Once the throttling starts, it will remain in effect until cpu_throttle_stop
* is called.
*/
void cpu_throttle_set(int new_throttle_pct);
/**
* cpu_throttle_stop:
*
* Stops the vcpu throttling started by cpu_throttle_set.
*/
void cpu_throttle_stop(void);
/**
* cpu_throttle_active:
*
* Returns: %true if the vcpus are currently being throttled, %false otherwise.
*/
bool cpu_throttle_active(void);
/**
* cpu_throttle_get_percentage:
*
* Returns the vcpu throttle percentage. See cpu_throttle_set for details.
*
* Returns: The throttle percentage in range 1 to 99.
*/
int cpu_throttle_get_percentage(void);
#ifndef CONFIG_USER_ONLY
typedef void (*CPUInterruptHandler)(CPUState *, int);
extern CPUInterruptHandler cpu_interrupt_handler;
/**
* cpu_interrupt:
* @cpu: The CPU to set an interrupt on.
* @mask: The interupts to set.
*
* Invokes the interrupt handler.
*/
static inline void cpu_interrupt(CPUState *cpu, int mask)
{
cpu_interrupt_handler(cpu, mask);
}
#else /* USER_ONLY */
void cpu_interrupt(CPUState *cpu, int mask);
#endif /* USER_ONLY */
#ifdef CONFIG_SOFTMMU
static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
bool is_write, bool is_exec,
int opaque, unsigned size)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
if (cc->do_unassigned_access) {
cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
}
}
static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
}
#endif
/**
* cpu_set_pc:
* @cpu: The CPU to set the program counter for.
* @addr: Program counter value.
*
* Sets the program counter for a CPU.
*/
static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
cc->set_pc(cpu, addr);
}
/**
* cpu_reset_interrupt:
* @cpu: The CPU to clear the interrupt on.
* @mask: The interrupt mask to clear.
*
* Resets interrupts on the vCPU @cpu.
*/
void cpu_reset_interrupt(CPUState *cpu, int mask);
/**
* cpu_exit:
* @cpu: The CPU to exit.
*
* Requests the CPU @cpu to exit execution.
*/
void cpu_exit(CPUState *cpu);
/**
* cpu_resume:
* @cpu: The CPU to resume.
*
* Resumes CPU, i.e. puts CPU into runnable state.
*/
void cpu_resume(CPUState *cpu);
/**
* cpu_remove:
* @cpu: The CPU to remove.
*
* Requests the CPU to be removed.
*/
void cpu_remove(CPUState *cpu);
/**
* cpu_remove_sync:
* @cpu: The CPU to remove.
*
* Requests the CPU to be removed and waits till it is removed.
*/
void cpu_remove_sync(CPUState *cpu);
/**
* process_queued_cpu_work() - process all items on CPU work queue
* @cpu: The CPU which work queue to process.
*/
void process_queued_cpu_work(CPUState *cpu);
/**
* cpu_exec_start:
* @cpu: The CPU for the current thread.
*
* Record that a CPU has started execution and can be interrupted with
* cpu_exit.
*/
void cpu_exec_start(CPUState *cpu);
/**
* cpu_exec_end:
* @cpu: The CPU for the current thread.
*
* Record that a CPU has stopped execution and exclusive sections
* can be executed without interrupting it.
*/
void cpu_exec_end(CPUState *cpu);
/**
* start_exclusive:
*
* Wait for a concurrent exclusive section to end, and then start
* a section of work that is run while other CPUs are not running
* between cpu_exec_start and cpu_exec_end. CPUs that are running
* cpu_exec are exited immediately. CPUs that call cpu_exec_start
* during the exclusive section go to sleep until this CPU calls
* end_exclusive.
*/
void start_exclusive(void);
/**
* end_exclusive:
*
* Concludes an exclusive execution section started by start_exclusive.
*/
void end_exclusive(void);
/**
* qemu_init_vcpu:
* @cpu: The vCPU to initialize.
*
* Initializes a vCPU.
*/
void qemu_init_vcpu(CPUState *cpu);
#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
/**
* cpu_single_step:
* @cpu: CPU to the flags for.
* @enabled: Flags to enable.
*
* Enables or disables single-stepping for @cpu.
*/
void cpu_single_step(CPUState *cpu, int enabled);
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ 0x01
#define BP_MEM_WRITE 0x02
#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
#define BP_STOP_BEFORE_ACCESS 0x04
/* 0x08 currently unused */
#define BP_GDB 0x10
#define BP_CPU 0x20
#define BP_ANY (BP_GDB | BP_CPU)
#define BP_WATCHPOINT_HIT_READ 0x40
#define BP_WATCHPOINT_HIT_WRITE 0x80
#define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
CPUBreakpoint **breakpoint);
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
/* Return true if PC matches an installed breakpoint. */
static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
{
CPUBreakpoint *bp;
if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
if (bp->pc == pc && (bp->flags & mask)) {
return true;
}
}
}
return false;
}
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
int flags, CPUWatchpoint **watchpoint);
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
vaddr len, int flags);
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
/**
* cpu_get_address_space:
* @cpu: CPU to get address space from
* @asidx: index identifying which address space to get
*
* Return the requested address space of this CPU. @asidx
* specifies which address space to read.
*/
AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
GCC_FMT_ATTR(2, 3);
void cpu_exec_exit(CPUState *cpu);
#ifdef CONFIG_SOFTMMU
extern const struct VMStateDescription vmstate_cpu_common;
#else
#define vmstate_cpu_common vmstate_dummy
#endif
#define VMSTATE_CPU() { \
.name = "parent_obj", \
.size = sizeof(CPUState), \
.vmsd = &vmstate_cpu_common, \
.flags = VMS_STRUCT, \
.offset = 0, \
}
#define UNASSIGNED_CPU_INDEX -1
#endif
|