1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
/*
* Memory Device Interface
*
* Copyright (c) 2018 Red Hat, Inc.
*
* Authors:
* David Hildenbrand <david@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifndef MEMORY_DEVICE_H
#define MEMORY_DEVICE_H
#include "qom/object.h"
#include "hw/qdev.h"
#define TYPE_MEMORY_DEVICE "memory-device"
#define MEMORY_DEVICE_CLASS(klass) \
OBJECT_CLASS_CHECK(MemoryDeviceClass, (klass), TYPE_MEMORY_DEVICE)
#define MEMORY_DEVICE_GET_CLASS(obj) \
OBJECT_GET_CLASS(MemoryDeviceClass, (obj), TYPE_MEMORY_DEVICE)
#define MEMORY_DEVICE(obj) \
INTERFACE_CHECK(MemoryDeviceState, (obj), TYPE_MEMORY_DEVICE)
typedef struct MemoryDeviceState {
Object parent_obj;
} MemoryDeviceState;
/**
* MemoryDeviceClass:
*
* All memory devices need to implement TYPE_MEMORY_DEVICE as an interface.
*
* A memory device is a device that owns a memory region which is
* mapped into guest physical address space at a certain address. The
* address in guest physical memory can either be specified explicitly
* or get assigned automatically.
*
* Conceptually, memory devices only span one memory region. If multiple
* successive memory regions are used, a covering memory region has to
* be provided. Scattered memory regions are not supported for single
* devices.
*/
typedef struct MemoryDeviceClass {
/* private */
InterfaceClass parent_class;
/*
* Return the address of the memory device in guest physical memory.
*
* Called when (un)plugging a memory device or when iterating over
* all memory devices mapped into guest physical address space.
*
* If "0" is returned, no address has been specified by the user and
* no address has been assigned to this memory device yet.
*/
uint64_t (*get_addr)(const MemoryDeviceState *md);
/*
* Set the address of the memory device in guest physical memory.
*
* Called when plugging the memory device to configure the determined
* address in guest physical memory.
*/
void (*set_addr)(MemoryDeviceState *md, uint64_t addr, Error **errp);
/*
* Return the amount of memory provided by the memory device currently
* usable ("plugged") by the VM.
*
* Called when calculating the total amount of ram available to the
* VM (e.g. to report memory stats to the user).
*
* This is helpful for devices that dynamically manage the amount of
* memory accessible by the guest via the reserved memory region. For
* most devices, this corresponds to the size of the memory region.
*/
uint64_t (*get_plugged_size)(const MemoryDeviceState *md, Error **errp);
/*
* Return the memory region of the memory device.
*
* Called when (un)plugging the memory device, to (un)map the
* memory region in guest physical memory, but also to detect the
* required alignment during address assignment or when the size of the
* memory region is required.
*/
MemoryRegion *(*get_memory_region)(MemoryDeviceState *md, Error **errp);
/*
* Translate the memory device into #MemoryDeviceInfo.
*/
void (*fill_device_info)(const MemoryDeviceState *md,
MemoryDeviceInfo *info);
} MemoryDeviceClass;
MemoryDeviceInfoList *qmp_memory_device_list(void);
uint64_t get_plugged_memory_size(void);
void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
const uint64_t *legacy_align, Error **errp);
void memory_device_plug(MemoryDeviceState *md, MachineState *ms);
void memory_device_unplug_region(MachineState *ms, MemoryRegion *mr);
uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
Error **errp);
#endif
|