aboutsummaryrefslogtreecommitdiff
path: root/include/exec/ram_addr.h
blob: 33c8acc02e456dc4250442909ca181faf59c395e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
 * Declarations for cpu physical memory functions
 *
 * Copyright 2011 Red Hat, Inc. and/or its affiliates
 *
 * Authors:
 *  Avi Kivity <avi@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or
 * later.  See the COPYING file in the top-level directory.
 *
 */

/*
 * This header is for use by exec.c and memory.c ONLY.  Do not include it.
 * The functions declared here will be removed soon.
 */

#ifndef RAM_ADDR_H
#define RAM_ADDR_H

#ifndef CONFIG_USER_ONLY
#include "hw/xen/xen.h"

ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
                                   MemoryRegion *mr);
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr);
void *qemu_get_ram_ptr(ram_addr_t addr);
void qemu_ram_free(ram_addr_t addr);
void qemu_ram_free_from_ptr(ram_addr_t addr);

static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
                                                 ram_addr_t length,
                                                 unsigned client)
{
    unsigned long end, page, next;

    assert(client < DIRTY_MEMORY_NUM);

    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
    next = find_next_bit(ram_list.dirty_memory[client], end, page);

    return next < end;
}

static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
                                                      unsigned client)
{
    return cpu_physical_memory_get_dirty(addr, 1, client);
}

static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
{
    bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
    bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
    bool migration =
        cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
    return !(vga && code && migration);
}

static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
                                                      unsigned client)
{
    assert(client < DIRTY_MEMORY_NUM);
    set_bit(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
}

static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
                                                       ram_addr_t length)
{
    unsigned long end, page;

    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
    bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION], page, end - page);
    bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_VGA], page, end - page);
    bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_CODE], page, end - page);
    xen_modified_memory(start, length);
}

static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
                                                          ram_addr_t start,
                                                          ram_addr_t pages)
{
    unsigned long i, j;
    unsigned long page_number, c;
    hwaddr addr;
    ram_addr_t ram_addr;
    unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
    unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);

    /* start address is aligned at the start of a word? */
    if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
        long k;
        long nr = BITS_TO_LONGS(pages);

        for (k = 0; k < nr; k++) {
            if (bitmap[k]) {
                unsigned long temp = leul_to_cpu(bitmap[k]);

                ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION][page + k] |= temp;
                ram_list.dirty_memory[DIRTY_MEMORY_VGA][page + k] |= temp;
                ram_list.dirty_memory[DIRTY_MEMORY_CODE][page + k] |= temp;
            }
        }
        xen_modified_memory(start, pages);
    } else {
        /*
         * bitmap-traveling is faster than memory-traveling (for addr...)
         * especially when most of the memory is not dirty.
         */
        for (i = 0; i < len; i++) {
            if (bitmap[i] != 0) {
                c = leul_to_cpu(bitmap[i]);
                do {
                    j = ffsl(c) - 1;
                    c &= ~(1ul << j);
                    page_number = (i * HOST_LONG_BITS + j) * hpratio;
                    addr = page_number * TARGET_PAGE_SIZE;
                    ram_addr = start + addr;
                    cpu_physical_memory_set_dirty_range(ram_addr,
                                       TARGET_PAGE_SIZE * hpratio);
                } while (c != 0);
            }
        }
    }
}

static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
                                                         ram_addr_t length,
                                                         unsigned client)
{
    unsigned long end, page;

    assert(client < DIRTY_MEMORY_NUM);
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
    bitmap_clear(ram_list.dirty_memory[client], page, end - page);
}

void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
                                     unsigned client);

#endif
#endif