aboutsummaryrefslogtreecommitdiff
path: root/include/exec/memory.h
blob: 2f386cecb79381e0b145c86f84f12c7c89786265 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
/*
 * Physical memory management API
 *
 * Copyright 2011 Red Hat, Inc. and/or its affiliates
 *
 * Authors:
 *  Avi Kivity <avi@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

#ifndef MEMORY_H
#define MEMORY_H

#ifndef CONFIG_USER_ONLY

#define DIRTY_MEMORY_VGA       0
#define DIRTY_MEMORY_CODE      1
#define DIRTY_MEMORY_MIGRATION 2
#define DIRTY_MEMORY_NUM       3        /* num of dirty bits */

#include <stdint.h>
#include <stdbool.h>
#include "qemu-common.h"
#include "exec/cpu-common.h"
#ifndef CONFIG_USER_ONLY
#include "exec/hwaddr.h"
#endif
#include "exec/memattrs.h"
#include "qemu/queue.h"
#include "qemu/int128.h"
#include "qemu/notify.h"
#include "qapi/error.h"
#include "qom/object.h"
#include "qemu/rcu.h"

#define MAX_PHYS_ADDR_SPACE_BITS 62
#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)

#define TYPE_MEMORY_REGION "qemu:memory-region"
#define MEMORY_REGION(obj) \
        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)

typedef struct MemoryRegionOps MemoryRegionOps;
typedef struct MemoryRegionMmio MemoryRegionMmio;

struct MemoryRegionMmio {
    CPUReadMemoryFunc *read[3];
    CPUWriteMemoryFunc *write[3];
};

typedef struct IOMMUTLBEntry IOMMUTLBEntry;

/* See address_space_translate: bit 0 is read, bit 1 is write.  */
typedef enum {
    IOMMU_NONE = 0,
    IOMMU_RO   = 1,
    IOMMU_WO   = 2,
    IOMMU_RW   = 3,
} IOMMUAccessFlags;

struct IOMMUTLBEntry {
    AddressSpace    *target_as;
    hwaddr           iova;
    hwaddr           translated_addr;
    hwaddr           addr_mask;  /* 0xfff = 4k translation */
    IOMMUAccessFlags perm;
};

/* New-style MMIO accessors can indicate that the transaction failed.
 * A zero (MEMTX_OK) response means success; anything else is a failure
 * of some kind. The memory subsystem will bitwise-OR together results
 * if it is synthesizing an operation from multiple smaller accesses.
 */
#define MEMTX_OK 0
#define MEMTX_ERROR             (1U << 0) /* device returned an error */
#define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
typedef uint32_t MemTxResult;

/*
 * Memory region callbacks
 */
struct MemoryRegionOps {
    /* Read from the memory region. @addr is relative to @mr; @size is
     * in bytes. */
    uint64_t (*read)(void *opaque,
                     hwaddr addr,
                     unsigned size);
    /* Write to the memory region. @addr is relative to @mr; @size is
     * in bytes. */
    void (*write)(void *opaque,
                  hwaddr addr,
                  uint64_t data,
                  unsigned size);

    MemTxResult (*read_with_attrs)(void *opaque,
                                   hwaddr addr,
                                   uint64_t *data,
                                   unsigned size,
                                   MemTxAttrs attrs);
    MemTxResult (*write_with_attrs)(void *opaque,
                                    hwaddr addr,
                                    uint64_t data,
                                    unsigned size,
                                    MemTxAttrs attrs);

    enum device_endian endianness;
    /* Guest-visible constraints: */
    struct {
        /* If nonzero, specify bounds on access sizes beyond which a machine
         * check is thrown.
         */
        unsigned min_access_size;
        unsigned max_access_size;
        /* If true, unaligned accesses are supported.  Otherwise unaligned
         * accesses throw machine checks.
         */
         bool unaligned;
        /*
         * If present, and returns #false, the transaction is not accepted
         * by the device (and results in machine dependent behaviour such
         * as a machine check exception).
         */
        bool (*accepts)(void *opaque, hwaddr addr,
                        unsigned size, bool is_write);
    } valid;
    /* Internal implementation constraints: */
    struct {
        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
         * will be rounded upwards and a partial result will be returned.
         */
        unsigned min_access_size;
        /* If nonzero, specifies the maximum size implemented.  Larger sizes
         * will be done as a series of accesses with smaller sizes.
         */
        unsigned max_access_size;
        /* If true, unaligned accesses are supported.  Otherwise all accesses
         * are converted to (possibly multiple) naturally aligned accesses.
         */
        bool unaligned;
    } impl;

    /* If .read and .write are not present, old_mmio may be used for
     * backwards compatibility with old mmio registration
     */
    const MemoryRegionMmio old_mmio;
};

typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;

struct MemoryRegionIOMMUOps {
    /* Return a TLB entry that contains a given address. */
    IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
};

typedef struct CoalescedMemoryRange CoalescedMemoryRange;
typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;

struct MemoryRegion {
    Object parent_obj;
    /* All fields are private - violators will be prosecuted */
    const MemoryRegionOps *ops;
    const MemoryRegionIOMMUOps *iommu_ops;
    void *opaque;
    MemoryRegion *container;
    Int128 size;
    hwaddr addr;
    void (*destructor)(MemoryRegion *mr);
    ram_addr_t ram_addr;
    uint64_t align;
    bool subpage;
    bool terminates;
    bool romd_mode;
    bool ram;
    bool skip_dump;
    bool readonly; /* For RAM regions */
    bool enabled;
    bool rom_device;
    bool warning_printed; /* For reservations */
    bool flush_coalesced_mmio;
    MemoryRegion *alias;
    hwaddr alias_offset;
    int32_t priority;
    bool may_overlap;
    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
    QTAILQ_ENTRY(MemoryRegion) subregions_link;
    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
    const char *name;
    uint8_t dirty_log_mask;
    unsigned ioeventfd_nb;
    MemoryRegionIoeventfd *ioeventfds;
    NotifierList iommu_notify;
};

/**
 * MemoryListener: callbacks structure for updates to the physical memory map
 *
 * Allows a component to adjust to changes in the guest-visible memory map.
 * Use with memory_listener_register() and memory_listener_unregister().
 */
struct MemoryListener {
    void (*begin)(MemoryListener *listener);
    void (*commit)(MemoryListener *listener);
    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
    void (*log_global_start)(MemoryListener *listener);
    void (*log_global_stop)(MemoryListener *listener);
    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
                        bool match_data, uint64_t data, EventNotifier *e);
    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
                        bool match_data, uint64_t data, EventNotifier *e);
    void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
                               hwaddr addr, hwaddr len);
    void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
                               hwaddr addr, hwaddr len);
    /* Lower = earlier (during add), later (during del) */
    unsigned priority;
    AddressSpace *address_space_filter;
    QTAILQ_ENTRY(MemoryListener) link;
};

/**
 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 */
struct AddressSpace {
    /* All fields are private. */
    struct rcu_head rcu;
    char *name;
    MemoryRegion *root;

    /* Accessed via RCU.  */
    struct FlatView *current_map;

    int ioeventfd_nb;
    struct MemoryRegionIoeventfd *ioeventfds;
    struct AddressSpaceDispatch *dispatch;
    struct AddressSpaceDispatch *next_dispatch;
    MemoryListener dispatch_listener;

    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
};

/**
 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 *
 * @mr: the region, or %NULL if empty
 * @address_space: the address space the region is mapped in
 * @offset_within_region: the beginning of the section, relative to @mr's start
 * @size: the size of the section; will not exceed @mr's boundaries
 * @offset_within_address_space: the address of the first byte of the section
 *     relative to the region's address space
 * @readonly: writes to this section are ignored
 */
struct MemoryRegionSection {
    MemoryRegion *mr;
    AddressSpace *address_space;
    hwaddr offset_within_region;
    Int128 size;
    hwaddr offset_within_address_space;
    bool readonly;
};

/**
 * memory_region_init: Initialize a memory region
 *
 * The region typically acts as a container for other memory regions.  Use
 * memory_region_add_subregion() to add subregions.
 *
 * @mr: the #MemoryRegion to be initialized
 * @owner: the object that tracks the region's reference count
 * @name: used for debugging; not visible to the user or ABI
 * @size: size of the region; any subregions beyond this size will be clipped
 */
void memory_region_init(MemoryRegion *mr,
                        struct Object *owner,
                        const char *name,
                        uint64_t size);

/**
 * memory_region_ref: Add 1 to a memory region's reference count
 *
 * Whenever memory regions are accessed outside the BQL, they need to be
 * preserved against hot-unplug.  MemoryRegions actually do not have their
 * own reference count; they piggyback on a QOM object, their "owner".
 * This function adds a reference to the owner.
 *
 * All MemoryRegions must have an owner if they can disappear, even if the
 * device they belong to operates exclusively under the BQL.  This is because
 * the region could be returned at any time by memory_region_find, and this
 * is usually under guest control.
 *
 * @mr: the #MemoryRegion
 */
void memory_region_ref(MemoryRegion *mr);

/**
 * memory_region_unref: Remove 1 to a memory region's reference count
 *
 * Whenever memory regions are accessed outside the BQL, they need to be
 * preserved against hot-unplug.  MemoryRegions actually do not have their
 * own reference count; they piggyback on a QOM object, their "owner".
 * This function removes a reference to the owner and possibly destroys it.
 *
 * @mr: the #MemoryRegion
 */
void memory_region_unref(MemoryRegion *mr);

/**
 * memory_region_init_io: Initialize an I/O memory region.
 *
 * Accesses into the region will cause the callbacks in @ops to be called.
 * if @size is nonzero, subregions will be clipped to @size.
 *
 * @mr: the #MemoryRegion to be initialized.
 * @owner: the object that tracks the region's reference count
 * @ops: a structure containing read and write callbacks to be used when
 *       I/O is performed on the region.
 * @opaque: passed to to the read and write callbacks of the @ops structure.
 * @name: used for debugging; not visible to the user or ABI
 * @size: size of the region.
 */
void memory_region_init_io(MemoryRegion *mr,
                           struct Object *owner,
                           const MemoryRegionOps *ops,
                           void *opaque,
                           const char *name,
                           uint64_t size);

/**
 * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
 *                          region will modify memory directly.
 *
 * @mr: the #MemoryRegion to be initialized.
 * @owner: the object that tracks the region's reference count
 * @name: the name of the region.
 * @size: size of the region.
 * @errp: pointer to Error*, to store an error if it happens.
 */
void memory_region_init_ram(MemoryRegion *mr,
                            struct Object *owner,
                            const char *name,
                            uint64_t size,
                            Error **errp);

/**
 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 *                                     RAM.  Accesses into the region will
 *                                     modify memory directly.  Only an initial
 *                                     portion of this RAM is actually used.
 *                                     The used size can change across reboots.
 *
 * @mr: the #MemoryRegion to be initialized.
 * @owner: the object that tracks the region's reference count
 * @name: the name of the region.
 * @size: used size of the region.
 * @max_size: max size of the region.
 * @resized: callback to notify owner about used size change.
 * @errp: pointer to Error*, to store an error if it happens.
 */
void memory_region_init_resizeable_ram(MemoryRegion *mr,
                                       struct Object *owner,
                                       const char *name,
                                       uint64_t size,
                                       uint64_t max_size,
                                       void (*resized)(const char*,
                                                       uint64_t length,
                                                       void *host),
                                       Error **errp);
#ifdef __linux__
/**
 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 *                                    mmap-ed backend.
 *
 * @mr: the #MemoryRegion to be initialized.
 * @owner: the object that tracks the region's reference count
 * @name: the name of the region.
 * @size: size of the region.
 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 * @path: the path in which to allocate the RAM.
 * @errp: pointer to Error*, to store an error if it happens.
 */
void memory_region_init_ram_from_file(MemoryRegion *mr,
                                      struct Object *owner,
                                      const char *name,
                                      uint64_t size,
                                      bool share,
                                      const char *path,
                                      Error **errp);
#endif

/**
 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 *                              user-provided pointer.  Accesses into the
 *                              region will modify memory directly.
 *
 * @mr: the #MemoryRegion to be initialized.
 * @owner: the object that tracks the region's reference count
 * @name: the name of the region.
 * @size: size of the region.
 * @ptr: memory to be mapped; must contain at least @size bytes.
 */
void memory_region_init_ram_ptr(MemoryRegion *mr,
                                struct Object *owner,
                                const char *name,
                                uint64_t size,
                                void *ptr);

/**
 * memory_region_init_alias: Initialize a memory region that aliases all or a
 *                           part of another memory region.
 *
 * @mr: the #MemoryRegion to be initialized.
 * @owner: the object that tracks the region's reference count
 * @name: used for debugging; not visible to the user or ABI
 * @orig: the region to be referenced; @mr will be equivalent to
 *        @orig between @offset and @offset + @size - 1.
 * @offset: start of the section in @orig to be referenced.
 * @size: size of the region.
 */
void memory_region_init_alias(MemoryRegion *mr,
                              struct Object *owner,
                              const char *name,
                              MemoryRegion *orig,
                              hwaddr offset,
                              uint64_t size);

/**
 * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
 *                                 handled via callbacks.
 *
 * @mr: the #MemoryRegion to be initialized.
 * @owner: the object that tracks the region's reference count
 * @ops: callbacks for write access handling.
 * @name: the name of the region.
 * @size: size of the region.
 * @errp: pointer to Error*, to store an error if it happens.
 */
void memory_region_init_rom_device(MemoryRegion *mr,
                                   struct Object *owner,
                                   const MemoryRegionOps *ops,
                                   void *opaque,
                                   const char *name,
                                   uint64_t size,
                                   Error **errp);

/**
 * memory_region_init_reservation: Initialize a memory region that reserves
 *                                 I/O space.
 *
 * A reservation region primariy serves debugging purposes.  It claims I/O
 * space that is not supposed to be handled by QEMU itself.  Any access via
 * the memory API will cause an abort().
 *
 * @mr: the #MemoryRegion to be initialized
 * @owner: the object that tracks the region's reference count
 * @name: used for debugging; not visible to the user or ABI
 * @size: size of the region.
 */
void memory_region_init_reservation(MemoryRegion *mr,
                                    struct Object *owner,
                                    const char *name,
                                    uint64_t size);

/**
 * memory_region_init_iommu: Initialize a memory region that translates
 * addresses
 *
 * An IOMMU region translates addresses and forwards accesses to a target
 * memory region.
 *
 * @mr: the #MemoryRegion to be initialized
 * @owner: the object that tracks the region's reference count
 * @ops: a function that translates addresses into the @target region
 * @name: used for debugging; not visible to the user or ABI
 * @size: size of the region.
 */
void memory_region_init_iommu(MemoryRegion *mr,
                              struct Object *owner,
                              const MemoryRegionIOMMUOps *ops,
                              const char *name,
                              uint64_t size);

/**
 * memory_region_owner: get a memory region's owner.
 *
 * @mr: the memory region being queried.
 */
struct Object *memory_region_owner(MemoryRegion *mr);

/**
 * memory_region_size: get a memory region's size.
 *
 * @mr: the memory region being queried.
 */
uint64_t memory_region_size(MemoryRegion *mr);

/**
 * memory_region_is_ram: check whether a memory region is random access
 *
 * Returns %true is a memory region is random access.
 *
 * @mr: the memory region being queried
 */
bool memory_region_is_ram(MemoryRegion *mr);

/**
 * memory_region_is_skip_dump: check whether a memory region should not be
 *                             dumped
 *
 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
 *
 * @mr: the memory region being queried
 */
bool memory_region_is_skip_dump(MemoryRegion *mr);

/**
 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
 *                              region
 *
 * @mr: the memory region being queried
 */
void memory_region_set_skip_dump(MemoryRegion *mr);

/**
 * memory_region_is_romd: check whether a memory region is in ROMD mode
 *
 * Returns %true if a memory region is a ROM device and currently set to allow
 * direct reads.
 *
 * @mr: the memory region being queried
 */
static inline bool memory_region_is_romd(MemoryRegion *mr)
{
    return mr->rom_device && mr->romd_mode;
}

/**
 * memory_region_is_iommu: check whether a memory region is an iommu
 *
 * Returns %true is a memory region is an iommu.
 *
 * @mr: the memory region being queried
 */
bool memory_region_is_iommu(MemoryRegion *mr);

/**
 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
 *
 * @mr: the memory region that was changed
 * @entry: the new entry in the IOMMU translation table.  The entry
 *         replaces all old entries for the same virtual I/O address range.
 *         Deleted entries have .@perm == 0.
 */
void memory_region_notify_iommu(MemoryRegion *mr,
                                IOMMUTLBEntry entry);

/**
 * memory_region_register_iommu_notifier: register a notifier for changes to
 * IOMMU translation entries.
 *
 * @mr: the memory region to observe
 * @n: the notifier to be added; the notifier receives a pointer to an
 *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
 *     valid on exit from the notifier.
 */
void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);

/**
 * memory_region_unregister_iommu_notifier: unregister a notifier for
 * changes to IOMMU translation entries.
 *
 * @n: the notifier to be removed.
 */
void memory_region_unregister_iommu_notifier(Notifier *n);

/**
 * memory_region_name: get a memory region's name
 *
 * Returns the string that was used to initialize the memory region.
 *
 * @mr: the memory region being queried
 */
const char *memory_region_name(const MemoryRegion *mr);

/**
 * memory_region_is_logging: return whether a memory region is logging writes
 *
 * Returns %true if the memory region is logging writes
 *
 * @mr: the memory region being queried
 */
bool memory_region_is_logging(MemoryRegion *mr);

/**
 * memory_region_is_rom: check whether a memory region is ROM
 *
 * Returns %true is a memory region is read-only memory.
 *
 * @mr: the memory region being queried
 */
bool memory_region_is_rom(MemoryRegion *mr);

/**
 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
 *
 * Returns a file descriptor backing a file-based RAM memory region,
 * or -1 if the region is not a file-based RAM memory region.
 *
 * @mr: the RAM or alias memory region being queried.
 */
int memory_region_get_fd(MemoryRegion *mr);

/**
 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
 *
 * Returns a host pointer to a RAM memory region (created with
 * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
 * care.
 *
 * @mr: the memory region being queried.
 */
void *memory_region_get_ram_ptr(MemoryRegion *mr);

/**
 * memory_region_set_log: Turn dirty logging on or off for a region.
 *
 * Turns dirty logging on or off for a specified client (display, migration).
 * Only meaningful for RAM regions.
 *
 * @mr: the memory region being updated.
 * @log: whether dirty logging is to be enabled or disabled.
 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 *          %DIRTY_MEMORY_VGA.
 */
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);

/**
 * memory_region_get_dirty: Check whether a range of bytes is dirty
 *                          for a specified client.
 *
 * Checks whether a range of bytes has been written to since the last
 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 * must be enabled.
 *
 * @mr: the memory region being queried.
 * @addr: the address (relative to the start of the region) being queried.
 * @size: the size of the range being queried.
 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 *          %DIRTY_MEMORY_VGA.
 */
bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
                             hwaddr size, unsigned client);

/**
 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
 *
 * Marks a range of bytes as dirty, after it has been dirtied outside
 * guest code.
 *
 * @mr: the memory region being dirtied.
 * @addr: the address (relative to the start of the region) being dirtied.
 * @size: size of the range being dirtied.
 */
void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
                             hwaddr size);

/**
 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
 *                                     for a specified client. It clears them.
 *
 * Checks whether a range of bytes has been written to since the last
 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 * must be enabled.
 *
 * @mr: the memory region being queried.
 * @addr: the address (relative to the start of the region) being queried.
 * @size: the size of the range being queried.
 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 *          %DIRTY_MEMORY_VGA.
 */
bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
                                        hwaddr size, unsigned client);
/**
 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
 *                                  any external TLBs (e.g. kvm)
 *
 * Flushes dirty information from accelerators such as kvm and vhost-net
 * and makes it available to users of the memory API.
 *
 * @mr: the region being flushed.
 */
void memory_region_sync_dirty_bitmap(MemoryRegion *mr);

/**
 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
 *                            client.
 *
 * Marks a range of pages as no longer dirty.
 *
 * @mr: the region being updated.
 * @addr: the start of the subrange being cleaned.
 * @size: the size of the subrange being cleaned.
 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 *          %DIRTY_MEMORY_VGA.
 */
void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
                               hwaddr size, unsigned client);

/**
 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
 *
 * Allows a memory region to be marked as read-only (turning it into a ROM).
 * only useful on RAM regions.
 *
 * @mr: the region being updated.
 * @readonly: whether rhe region is to be ROM or RAM.
 */
void memory_region_set_readonly(MemoryRegion *mr, bool readonly);

/**
 * memory_region_rom_device_set_romd: enable/disable ROMD mode
 *
 * Allows a ROM device (initialized with memory_region_init_rom_device() to
 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
 * device is mapped to guest memory and satisfies read access directly.
 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
 * Writes are always handled by the #MemoryRegion.write function.
 *
 * @mr: the memory region to be updated
 * @romd_mode: %true to put the region into ROMD mode
 */
void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);

/**
 * memory_region_set_coalescing: Enable memory coalescing for the region.
 *
 * Enabled writes to a region to be queued for later processing. MMIO ->write
 * callbacks may be delayed until a non-coalesced MMIO is issued.
 * Only useful for IO regions.  Roughly similar to write-combining hardware.
 *
 * @mr: the memory region to be write coalesced
 */
void memory_region_set_coalescing(MemoryRegion *mr);

/**
 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
 *                               a region.
 *
 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
 * Multiple calls can be issued coalesced disjoint ranges.
 *
 * @mr: the memory region to be updated.
 * @offset: the start of the range within the region to be coalesced.
 * @size: the size of the subrange to be coalesced.
 */
void memory_region_add_coalescing(MemoryRegion *mr,
                                  hwaddr offset,
                                  uint64_t size);

/**
 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
 *
 * Disables any coalescing caused by memory_region_set_coalescing() or
 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
 * hardware.
 *
 * @mr: the memory region to be updated.
 */
void memory_region_clear_coalescing(MemoryRegion *mr);

/**
 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
 *                                    accesses.
 *
 * Ensure that pending coalesced MMIO request are flushed before the memory
 * region is accessed. This property is automatically enabled for all regions
 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
 *
 * @mr: the memory region to be updated.
 */
void memory_region_set_flush_coalesced(MemoryRegion *mr);

/**
 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
 *                                      accesses.
 *
 * Clear the automatic coalesced MMIO flushing enabled via
 * memory_region_set_flush_coalesced. Note that this service has no effect on
 * memory regions that have MMIO coalescing enabled for themselves. For them,
 * automatic flushing will stop once coalescing is disabled.
 *
 * @mr: the memory region to be updated.
 */
void memory_region_clear_flush_coalesced(MemoryRegion *mr);

/**
 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
 *                            is written to a location.
 *
 * Marks a word in an IO region (initialized with memory_region_init_io())
 * as a trigger for an eventfd event.  The I/O callback will not be called.
 * The caller must be prepared to handle failure (that is, take the required
 * action if the callback _is_ called).
 *
 * @mr: the memory region being updated.
 * @addr: the address within @mr that is to be monitored
 * @size: the size of the access to trigger the eventfd
 * @match_data: whether to match against @data, instead of just @addr
 * @data: the data to match against the guest write
 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 **/
void memory_region_add_eventfd(MemoryRegion *mr,
                               hwaddr addr,
                               unsigned size,
                               bool match_data,
                               uint64_t data,
                               EventNotifier *e);

/**
 * memory_region_del_eventfd: Cancel an eventfd.
 *
 * Cancels an eventfd trigger requested by a previous
 * memory_region_add_eventfd() call.
 *
 * @mr: the memory region being updated.
 * @addr: the address within @mr that is to be monitored
 * @size: the size of the access to trigger the eventfd
 * @match_data: whether to match against @data, instead of just @addr
 * @data: the data to match against the guest write
 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 */
void memory_region_del_eventfd(MemoryRegion *mr,
                               hwaddr addr,
                               unsigned size,
                               bool match_data,
                               uint64_t data,
                               EventNotifier *e);

/**
 * memory_region_add_subregion: Add a subregion to a container.
 *
 * Adds a subregion at @offset.  The subregion may not overlap with other
 * subregions (except for those explicitly marked as overlapping).  A region
 * may only be added once as a subregion (unless removed with
 * memory_region_del_subregion()); use memory_region_init_alias() if you
 * want a region to be a subregion in multiple locations.
 *
 * @mr: the region to contain the new subregion; must be a container
 *      initialized with memory_region_init().
 * @offset: the offset relative to @mr where @subregion is added.
 * @subregion: the subregion to be added.
 */
void memory_region_add_subregion(MemoryRegion *mr,
                                 hwaddr offset,
                                 MemoryRegion *subregion);
/**
 * memory_region_add_subregion_overlap: Add a subregion to a container
 *                                      with overlap.
 *
 * Adds a subregion at @offset.  The subregion may overlap with other
 * subregions.  Conflicts are resolved by having a higher @priority hide a
 * lower @priority. Subregions without priority are taken as @priority 0.
 * A region may only be added once as a subregion (unless removed with
 * memory_region_del_subregion()); use memory_region_init_alias() if you
 * want a region to be a subregion in multiple locations.
 *
 * @mr: the region to contain the new subregion; must be a container
 *      initialized with memory_region_init().
 * @offset: the offset relative to @mr where @subregion is added.
 * @subregion: the subregion to be added.
 * @priority: used for resolving overlaps; highest priority wins.
 */
void memory_region_add_subregion_overlap(MemoryRegion *mr,
                                         hwaddr offset,
                                         MemoryRegion *subregion,
                                         int priority);

/**
 * memory_region_get_ram_addr: Get the ram address associated with a memory
 *                             region
 *
 * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
 * code is being reworked.
 */
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);

uint64_t memory_region_get_alignment(const MemoryRegion *mr);
/**
 * memory_region_del_subregion: Remove a subregion.
 *
 * Removes a subregion from its container.
 *
 * @mr: the container to be updated.
 * @subregion: the region being removed; must be a current subregion of @mr.
 */
void memory_region_del_subregion(MemoryRegion *mr,
                                 MemoryRegion *subregion);

/*
 * memory_region_set_enabled: dynamically enable or disable a region
 *
 * Enables or disables a memory region.  A disabled memory region
 * ignores all accesses to itself and its subregions.  It does not
 * obscure sibling subregions with lower priority - it simply behaves as
 * if it was removed from the hierarchy.
 *
 * Regions default to being enabled.
 *
 * @mr: the region to be updated
 * @enabled: whether to enable or disable the region
 */
void memory_region_set_enabled(MemoryRegion *mr, bool enabled);

/*
 * memory_region_set_address: dynamically update the address of a region
 *
 * Dynamically updates the address of a region, relative to its container.
 * May be used on regions are currently part of a memory hierarchy.
 *
 * @mr: the region to be updated
 * @addr: new address, relative to container region
 */
void memory_region_set_address(MemoryRegion *mr, hwaddr addr);

/*
 * memory_region_set_size: dynamically update the size of a region.
 *
 * Dynamically updates the size of a region.
 *
 * @mr: the region to be updated
 * @size: used size of the region.
 */
void memory_region_set_size(MemoryRegion *mr, uint64_t size);

/*
 * memory_region_set_alias_offset: dynamically update a memory alias's offset
 *
 * Dynamically updates the offset into the target region that an alias points
 * to, as if the fourth argument to memory_region_init_alias() has changed.
 *
 * @mr: the #MemoryRegion to be updated; should be an alias.
 * @offset: the new offset into the target memory region
 */
void memory_region_set_alias_offset(MemoryRegion *mr,
                                    hwaddr offset);

/**
 * memory_region_present: checks if an address relative to a @container
 * translates into #MemoryRegion within @container
 *
 * Answer whether a #MemoryRegion within @container covers the address
 * @addr.
 *
 * @container: a #MemoryRegion within which @addr is a relative address
 * @addr: the area within @container to be searched
 */
bool memory_region_present(MemoryRegion *container, hwaddr addr);

/**
 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
 * into any address space.
 *
 * @mr: a #MemoryRegion which should be checked if it's mapped
 */
bool memory_region_is_mapped(MemoryRegion *mr);

/**
 * memory_region_find: translate an address/size relative to a
 * MemoryRegion into a #MemoryRegionSection.
 *
 * Locates the first #MemoryRegion within @mr that overlaps the range
 * given by @addr and @size.
 *
 * Returns a #MemoryRegionSection that describes a contiguous overlap.
 * It will have the following characteristics:
 *    .@size = 0 iff no overlap was found
 *    .@mr is non-%NULL iff an overlap was found
 *
 * Remember that in the return value the @offset_within_region is
 * relative to the returned region (in the .@mr field), not to the
 * @mr argument.
 *
 * Similarly, the .@offset_within_address_space is relative to the
 * address space that contains both regions, the passed and the
 * returned one.  However, in the special case where the @mr argument
 * has no container (and thus is the root of the address space), the
 * following will hold:
 *    .@offset_within_address_space >= @addr
 *    .@offset_within_address_space + .@size <= @addr + @size
 *
 * @mr: a MemoryRegion within which @addr is a relative address
 * @addr: start of the area within @as to be searched
 * @size: size of the area to be searched
 */
MemoryRegionSection memory_region_find(MemoryRegion *mr,
                                       hwaddr addr, uint64_t size);

/**
 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
 *
 * Synchronizes the dirty page log for an entire address space.
 * @as: the address space that contains the memory being synchronized
 */
void address_space_sync_dirty_bitmap(AddressSpace *as);

/**
 * memory_region_transaction_begin: Start a transaction.
 *
 * During a transaction, changes will be accumulated and made visible
 * only when the transaction ends (is committed).
 */
void memory_region_transaction_begin(void);

/**
 * memory_region_transaction_commit: Commit a transaction and make changes
 *                                   visible to the guest.
 */
void memory_region_transaction_commit(void);

/**
 * memory_listener_register: register callbacks to be called when memory
 *                           sections are mapped or unmapped into an address
 *                           space
 *
 * @listener: an object containing the callbacks to be called
 * @filter: if non-%NULL, only regions in this address space will be observed
 */
void memory_listener_register(MemoryListener *listener, AddressSpace *filter);

/**
 * memory_listener_unregister: undo the effect of memory_listener_register()
 *
 * @listener: an object containing the callbacks to be removed
 */
void memory_listener_unregister(MemoryListener *listener);

/**
 * memory_global_dirty_log_start: begin dirty logging for all regions
 */
void memory_global_dirty_log_start(void);

/**
 * memory_global_dirty_log_stop: end dirty logging for all regions
 */
void memory_global_dirty_log_stop(void);

void mtree_info(fprintf_function mon_printf, void *f);

/**
 * memory_region_dispatch_read: perform a read directly to the specified
 * MemoryRegion.
 *
 * @mr: #MemoryRegion to access
 * @addr: address within that region
 * @pval: pointer to uint64_t which the data is written to
 * @size: size of the access in bytes
 * @attrs: memory transaction attributes to use for the access
 */
MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
                                        hwaddr addr,
                                        uint64_t *pval,
                                        unsigned size,
                                        MemTxAttrs attrs);
/**
 * memory_region_dispatch_write: perform a write directly to the specified
 * MemoryRegion.
 *
 * @mr: #MemoryRegion to access
 * @addr: address within that region
 * @data: data to write
 * @size: size of the access in bytes
 * @attrs: memory transaction attributes to use for the access
 */
MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
                                         hwaddr addr,
                                         uint64_t data,
                                         unsigned size,
                                         MemTxAttrs attrs);

/**
 * address_space_init: initializes an address space
 *
 * @as: an uninitialized #AddressSpace
 * @root: a #MemoryRegion that routes addesses for the address space
 * @name: an address space name.  The name is only used for debugging
 *        output.
 */
void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);


/**
 * address_space_destroy: destroy an address space
 *
 * Releases all resources associated with an address space.  After an address space
 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
 * as well.
 *
 * @as: address space to be destroyed
 */
void address_space_destroy(AddressSpace *as);

/**
 * address_space_rw: read from or write to an address space.
 *
 * Return a MemTxResult indicating whether the operation succeeded
 * or failed (eg unassigned memory, device rejected the transaction,
 * IOMMU fault).
 *
 * @as: #AddressSpace to be accessed
 * @addr: address within that address space
 * @attrs: memory transaction attributes
 * @buf: buffer with the data transferred
 * @is_write: indicates the transfer direction
 */
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
                             MemTxAttrs attrs, uint8_t *buf,
                             int len, bool is_write);

/**
 * address_space_write: write to address space.
 *
 * Return a MemTxResult indicating whether the operation succeeded
 * or failed (eg unassigned memory, device rejected the transaction,
 * IOMMU fault).
 *
 * @as: #AddressSpace to be accessed
 * @addr: address within that address space
 * @attrs: memory transaction attributes
 * @buf: buffer with the data transferred
 */
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
                                const uint8_t *buf, int len);

/**
 * address_space_read: read from an address space.
 *
 * Return a MemTxResult indicating whether the operation succeeded
 * or failed (eg unassigned memory, device rejected the transaction,
 * IOMMU fault).
 *
 * @as: #AddressSpace to be accessed
 * @addr: address within that address space
 * @attrs: memory transaction attributes
 * @buf: buffer with the data transferred
 */
MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
                               uint8_t *buf, int len);

/**
 * address_space_ld*: load from an address space
 * address_space_st*: store to an address space
 *
 * These functions perform a load or store of the byte, word,
 * longword or quad to the specified address within the AddressSpace.
 * The _le suffixed functions treat the data as little endian;
 * _be indicates big endian; no suffix indicates "same endianness
 * as guest CPU".
 *
 * The "guest CPU endianness" accessors are deprecated for use outside
 * target-* code; devices should be CPU-agnostic and use either the LE
 * or the BE accessors.
 *
 * @as #AddressSpace to be accessed
 * @addr: address within that address space
 * @val: data value, for stores
 * @attrs: memory transaction attributes
 * @result: location to write the success/failure of the transaction;
 *   if NULL, this information is discarded
 */
uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
                            MemTxAttrs attrs, MemTxResult *result);

#ifdef NEED_CPU_H
uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
                            MemTxAttrs attrs, MemTxResult *result);
void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
                            MemTxAttrs attrs, MemTxResult *result);
#endif

/* address_space_translate: translate an address range into an address space
 * into a MemoryRegion and an address range into that section
 *
 * @as: #AddressSpace to be accessed
 * @addr: address within that address space
 * @xlat: pointer to address within the returned memory region section's
 * #MemoryRegion.
 * @len: pointer to length
 * @is_write: indicates the transfer direction
 */
MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
                                      hwaddr *xlat, hwaddr *len,
                                      bool is_write);

/* address_space_access_valid: check for validity of accessing an address
 * space range
 *
 * Check whether memory is assigned to the given address space range, and
 * access is permitted by any IOMMU regions that are active for the address
 * space.
 *
 * For now, addr and len should be aligned to a page size.  This limitation
 * will be lifted in the future.
 *
 * @as: #AddressSpace to be accessed
 * @addr: address within that address space
 * @len: length of the area to be checked
 * @is_write: indicates the transfer direction
 */
bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);

/* address_space_map: map a physical memory region into a host virtual address
 *
 * May map a subset of the requested range, given by and returned in @plen.
 * May return %NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
 *
 * @as: #AddressSpace to be accessed
 * @addr: address within that address space
 * @plen: pointer to length of buffer; updated on return
 * @is_write: indicates the transfer direction
 */
void *address_space_map(AddressSpace *as, hwaddr addr,
                        hwaddr *plen, bool is_write);

/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
 *
 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
 * the amount of memory that was actually read or written by the caller.
 *
 * @as: #AddressSpace used
 * @addr: address within that address space
 * @len: buffer length as returned by address_space_map()
 * @access_len: amount of data actually transferred
 * @is_write: indicates the transfer direction
 */
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len);


#endif

#endif