1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
/*
* Declarations for obsolete exec.c functions
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*
*/
/*
* This header is for use by exec.c and memory.c ONLY. Do not include it.
* The functions declared here will be removed soon.
*/
#ifndef MEMORY_INTERNAL_H
#define MEMORY_INTERNAL_H
#ifndef CONFIG_USER_ONLY
#include "hw/xen/xen.h"
typedef struct AddressSpaceDispatch AddressSpaceDispatch;
void address_space_init_dispatch(AddressSpace *as);
void address_space_destroy_dispatch(AddressSpace *as);
extern const MemoryRegionOps unassigned_mem_ops;
bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
unsigned size, bool is_write);
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
MemoryRegion *mr);
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr);
void *qemu_get_ram_ptr(ram_addr_t addr);
void qemu_ram_free(ram_addr_t addr);
void qemu_ram_free_from_ptr(ram_addr_t addr);
static inline int cpu_physical_memory_get_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
int ret = 0;
ram_addr_t addr, end;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length);
start &= TARGET_PAGE_MASK;
for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
ret |= test_bit(addr >> TARGET_PAGE_BITS,
ram_list.dirty_memory[client]);
}
return ret;
}
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
unsigned client)
{
return cpu_physical_memory_get_dirty(addr, 1, client);
}
/* read dirty bit (return 0 or 1) */
static inline bool cpu_physical_memory_is_dirty(ram_addr_t addr)
{
bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
bool migration =
cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
return vga && code && migration;
}
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
unsigned client)
{
assert(client < DIRTY_MEMORY_NUM);
set_bit(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
}
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
ram_addr_t length)
{
ram_addr_t addr, end;
end = TARGET_PAGE_ALIGN(start + length);
start &= TARGET_PAGE_MASK;
for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
set_bit(addr >> TARGET_PAGE_BITS,
ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
set_bit(addr >> TARGET_PAGE_BITS,
ram_list.dirty_memory[DIRTY_MEMORY_VGA]);
set_bit(addr >> TARGET_PAGE_BITS,
ram_list.dirty_memory[DIRTY_MEMORY_CODE]);
}
xen_modified_memory(addr, length);
}
static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
ram_addr_t addr, end;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length);
start &= TARGET_PAGE_MASK;
for (addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
clear_bit(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
}
}
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
unsigned client);
#endif
#endif
|