aboutsummaryrefslogtreecommitdiff
path: root/hw/timer/aspeed_timer.c
blob: 2c3a4d0fe770b222b009c0746de7458ef0b8a6d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
 * ASPEED AST2400 Timer
 *
 * Andrew Jeffery <andrew@aj.id.au>
 *
 * Copyright (C) 2016 IBM Corp.
 *
 * This code is licensed under the GPL version 2 or later.  See
 * the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "hw/timer/aspeed_timer.h"
#include "qemu/bitops.h"
#include "qemu/timer.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "trace.h"

#define TIMER_NR_REGS 4

#define TIMER_CTRL_BITS 4
#define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)

#define TIMER_CLOCK_USE_EXT true
#define TIMER_CLOCK_EXT_HZ 1000000
#define TIMER_CLOCK_USE_APB false

#define TIMER_REG_STATUS 0
#define TIMER_REG_RELOAD 1
#define TIMER_REG_MATCH_FIRST 2
#define TIMER_REG_MATCH_SECOND 3

#define TIMER_FIRST_CAP_PULSE 4

enum timer_ctrl_op {
    op_enable = 0,
    op_external_clock,
    op_overflow_interrupt,
    op_pulse_enable
};

/**
 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
 * structs, as it's a waste of memory. The ptimer BH callback needs to know
 * whether a specific AspeedTimer is enabled, but this information is held in
 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
 * arbitrary AspeedTimer to AspeedTimerCtrlState.
 */
static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
{
    const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
    return container_of(timers, AspeedTimerCtrlState, timers);
}

static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
{
    return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
}

static inline bool timer_enabled(AspeedTimer *t)
{
    return timer_ctrl_status(t, op_enable);
}

static inline bool timer_overflow_interrupt(AspeedTimer *t)
{
    return timer_ctrl_status(t, op_overflow_interrupt);
}

static inline bool timer_can_pulse(AspeedTimer *t)
{
    return t->id >= TIMER_FIRST_CAP_PULSE;
}

static inline bool timer_external_clock(AspeedTimer *t)
{
    return timer_ctrl_status(t, op_external_clock);
}

static inline uint32_t calculate_rate(struct AspeedTimer *t)
{
    AspeedTimerCtrlState *s = timer_to_ctrl(t);

    return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : s->scu->apb_freq;
}

static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
{
    uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
    uint32_t rate = calculate_rate(t);
    uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);

    return t->reload - MIN(t->reload, ticks);
}

static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
{
    uint64_t delta_ns;
    uint64_t delta_ticks;

    delta_ticks = t->reload - MIN(t->reload, ticks);
    delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));

    return t->start + delta_ns;
}

static uint64_t calculate_next(struct AspeedTimer *t)
{
    uint64_t next = 0;
    uint32_t rate = calculate_rate(t);

    while (!next) {
        /* We don't know the relationship between the values in the match
         * registers, so sort using MAX/MIN/zero. We sort in that order as the
         * timer counts down to zero. */
        uint64_t seq[] = {
            calculate_time(t, MAX(t->match[0], t->match[1])),
            calculate_time(t, MIN(t->match[0], t->match[1])),
            calculate_time(t, 0),
        };
        uint64_t reload_ns;
        uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);

        if (now < seq[0]) {
            next = seq[0];
        } else if (now < seq[1]) {
            next = seq[1];
        } else if (now < seq[2]) {
            next = seq[2];
        } else if (t->reload) {
            reload_ns = muldiv64(t->reload, NANOSECONDS_PER_SECOND, rate);
            t->start = now - ((now - t->start) % reload_ns);
        } else {
            /* no reload value, return 0 */
            break;
        }
    }

    return next;
}

static void aspeed_timer_mod(AspeedTimer *t)
{
    uint64_t next = calculate_next(t);
    if (next) {
        timer_mod(&t->timer, next);
    }
}

static void aspeed_timer_expire(void *opaque)
{
    AspeedTimer *t = opaque;
    bool interrupt = false;
    uint32_t ticks;

    if (!timer_enabled(t)) {
        return;
    }

    ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));

    if (!ticks) {
        interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
    } else if (ticks <= MIN(t->match[0], t->match[1])) {
        interrupt = true;
    } else if (ticks <= MAX(t->match[0], t->match[1])) {
        interrupt = true;
    }

    if (interrupt) {
        t->level = !t->level;
        qemu_set_irq(t->irq, t->level);
    }

    aspeed_timer_mod(t);
}

static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
{
    uint64_t value;

    switch (reg) {
    case TIMER_REG_STATUS:
        value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
        break;
    case TIMER_REG_RELOAD:
        value = t->reload;
        break;
    case TIMER_REG_MATCH_FIRST:
    case TIMER_REG_MATCH_SECOND:
        value = t->match[reg - 2];
        break;
    default:
        qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
                      __func__, reg);
        value = 0;
        break;
    }
    return value;
}

static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
{
    AspeedTimerCtrlState *s = opaque;
    const int reg = (offset & 0xf) / 4;
    uint64_t value;

    switch (offset) {
    case 0x30: /* Control Register */
        value = s->ctrl;
        break;
    case 0x34: /* Control Register 2 */
        value = s->ctrl2;
        break;
    case 0x00 ... 0x2c: /* Timers 1 - 4 */
        value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
        break;
    case 0x40 ... 0x8c: /* Timers 5 - 8 */
        value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
        break;
    /* Illegal */
    case 0x38:
    case 0x3C:
    default:
        qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
                __func__, offset);
        value = 0;
        break;
    }
    trace_aspeed_timer_read(offset, size, value);
    return value;
}

static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
                                   uint32_t value)
{
    AspeedTimer *t;
    uint32_t old_reload;

    trace_aspeed_timer_set_value(timer, reg, value);
    t = &s->timers[timer];
    switch (reg) {
    case TIMER_REG_RELOAD:
        old_reload = t->reload;
        t->reload = value;

        /* If the reload value was not previously set, or zero, and
         * the current value is valid, try to start the timer if it is
         * enabled.
         */
        if (old_reload || !t->reload) {
            break;
        }

    case TIMER_REG_STATUS:
        if (timer_enabled(t)) {
            uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
            int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
            uint32_t rate = calculate_rate(t);

            t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
            aspeed_timer_mod(t);
        }
        break;
    case TIMER_REG_MATCH_FIRST:
    case TIMER_REG_MATCH_SECOND:
        t->match[reg - 2] = value;
        if (timer_enabled(t)) {
            aspeed_timer_mod(t);
        }
        break;
    default:
        qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
                      __func__, reg);
        break;
    }
}

/* Control register operations are broken out into helpers that can be
 * explicitly called on aspeed_timer_reset(), but also from
 * aspeed_timer_ctrl_op().
 */

static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
{
    trace_aspeed_timer_ctrl_enable(t->id, enable);
    if (enable) {
        t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
        aspeed_timer_mod(t);
    } else {
        timer_del(&t->timer);
    }
}

static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
{
    trace_aspeed_timer_ctrl_external_clock(t->id, enable);
}

static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
{
    trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
}

static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
{
    if (timer_can_pulse(t)) {
        trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
    } else {
        qemu_log_mask(LOG_GUEST_ERROR,
                "%s: Timer does not support pulse mode\n", __func__);
    }
}

/**
 * Given the actions are fixed in number and completely described in helper
 * functions, dispatch with a lookup table rather than manage control flow with
 * a switch statement.
 */
static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
    [op_enable] = aspeed_timer_ctrl_enable,
    [op_external_clock] = aspeed_timer_ctrl_external_clock,
    [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
    [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
};

/**
 * Conditionally affect changes chosen by a timer's control bit.
 *
 * The aspeed_timer_ctrl_op() interface is convenient for the
 * aspeed_timer_set_ctrl() function as the "no change" early exit can be
 * calculated for all operations, which cleans up the caller code. However the
 * interface isn't convenient for the reset function where we want to enter a
 * specific state without artificially constructing old and new values that
 * will fall through the change guard (and motivates extracting the actions
 * out to helper functions).
 *
 * @t: The timer to manipulate
 * @op: The type of operation to be performed
 * @old: The old state of the timer's control bits
 * @new: The incoming state for the timer's control bits
 */
static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
                                 uint8_t old, uint8_t new)
{
    const uint8_t mask = BIT(op);
    const bool enable = !!(new & mask);
    const bool changed = ((old ^ new) & mask);
    if (!changed) {
        return;
    }
    ctrl_ops[op](t, enable);
}

static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
{
    int i;
    int shift;
    uint8_t t_old, t_new;
    AspeedTimer *t;
    const uint8_t enable_mask = BIT(op_enable);

    /* Handle a dependency between the 'enable' and remaining three
     * configuration bits - i.e. if more than one bit in the control set has
     * changed, including the 'enable' bit, then we want either disable the
     * timer and perform configuration, or perform configuration and then
     * enable the timer
     */
    for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
        t = &s->timers[i];
        shift = (i * TIMER_CTRL_BITS);
        t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
        t_new = (reg >> shift) & TIMER_CTRL_MASK;

        /* If we are disabling, do so first */
        if ((t_old & enable_mask) && !(t_new & enable_mask)) {
            aspeed_timer_ctrl_enable(t, false);
        }
        aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
        aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
        aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
        /* If we are enabling, do so last */
        if (!(t_old & enable_mask) && (t_new & enable_mask)) {
            aspeed_timer_ctrl_enable(t, true);
        }
    }
    s->ctrl = reg;
}

static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
{
    trace_aspeed_timer_set_ctrl2(value);
}

static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
                               unsigned size)
{
    const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
    const int reg = (offset & 0xf) / 4;
    AspeedTimerCtrlState *s = opaque;

    switch (offset) {
    /* Control Registers */
    case 0x30:
        aspeed_timer_set_ctrl(s, tv);
        break;
    case 0x34:
        aspeed_timer_set_ctrl2(s, tv);
        break;
    /* Timer Registers */
    case 0x00 ... 0x2c:
        aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
        break;
    case 0x40 ... 0x8c:
        aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
        break;
    /* Illegal */
    case 0x38:
    case 0x3C:
    default:
        qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
                __func__, offset);
        break;
    }
}

static const MemoryRegionOps aspeed_timer_ops = {
    .read = aspeed_timer_read,
    .write = aspeed_timer_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid.min_access_size = 4,
    .valid.max_access_size = 4,
    .valid.unaligned = false,
};

static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
{
    AspeedTimer *t = &s->timers[id];

    t->id = id;
    timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
}

static void aspeed_timer_realize(DeviceState *dev, Error **errp)
{
    int i;
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
    AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
    Object *obj;
    Error *err = NULL;

    obj = object_property_get_link(OBJECT(dev), "scu", &err);
    if (!obj) {
        error_propagate_prepend(errp, err, "required link 'scu' not found: ");
        return;
    }
    s->scu = ASPEED_SCU(obj);

    for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
        aspeed_init_one_timer(s, i);
        sysbus_init_irq(sbd, &s->timers[i].irq);
    }
    memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
                          TYPE_ASPEED_TIMER, 0x1000);
    sysbus_init_mmio(sbd, &s->iomem);
}

static void aspeed_timer_reset(DeviceState *dev)
{
    int i;
    AspeedTimerCtrlState *s = ASPEED_TIMER(dev);

    for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
        AspeedTimer *t = &s->timers[i];
        /* Explicitly call helpers to avoid any conditional behaviour through
         * aspeed_timer_set_ctrl().
         */
        aspeed_timer_ctrl_enable(t, false);
        aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
        aspeed_timer_ctrl_overflow_interrupt(t, false);
        aspeed_timer_ctrl_pulse_enable(t, false);
        t->level = 0;
        t->reload = 0;
        t->match[0] = 0;
        t->match[1] = 0;
    }
    s->ctrl = 0;
    s->ctrl2 = 0;
}

static const VMStateDescription vmstate_aspeed_timer = {
    .name = "aspeed.timer",
    .version_id = 2,
    .minimum_version_id = 2,
    .fields = (VMStateField[]) {
        VMSTATE_UINT8(id, AspeedTimer),
        VMSTATE_INT32(level, AspeedTimer),
        VMSTATE_TIMER(timer, AspeedTimer),
        VMSTATE_UINT32(reload, AspeedTimer),
        VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
        VMSTATE_END_OF_LIST()
    }
};

static const VMStateDescription vmstate_aspeed_timer_state = {
    .name = "aspeed.timerctrl",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
        VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
        VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
                             ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
                             AspeedTimer),
        VMSTATE_END_OF_LIST()
    }
};

static void timer_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->realize = aspeed_timer_realize;
    dc->reset = aspeed_timer_reset;
    dc->desc = "ASPEED Timer";
    dc->vmsd = &vmstate_aspeed_timer_state;
}

static const TypeInfo aspeed_timer_info = {
    .name = TYPE_ASPEED_TIMER,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(AspeedTimerCtrlState),
    .class_init = timer_class_init,
};

static void aspeed_timer_register_types(void)
{
    type_register_static(&aspeed_timer_info);
}

type_init(aspeed_timer_register_types)