1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/*
* QEMU Sun4m System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#include "m48t08.h"
#define KERNEL_LOAD_ADDR 0x00004000
#define MMU_CONTEXT_TBL 0x00003000
#define MMU_L1PTP (MMU_CONTEXT_TBL + 0x0400)
#define MMU_L2PTP (MMU_CONTEXT_TBL + 0x0800)
#define ROMVEC_DATA (MMU_CONTEXT_TBL + 0x1800)
#define PROM_ADDR 0xffd04000
#define PROM_FILENAME "proll.bin"
#define PHYS_JJ_EEPROM 0x71200000 /* [2000] MK48T08 */
#define PHYS_JJ_IDPROM_OFF 0x1FD8
#define PHYS_JJ_EEPROM_SIZE 0x2000
/* TSC handling */
uint64_t cpu_get_tsc()
{
return qemu_get_clock(vm_clock);
}
void DMA_run() {}
void SB16_run() {}
void vga_invalidate_display() {}
void vga_screen_dump(const char *filename) {}
int serial_can_receive(SerialState *s) { return 0; }
void serial_receive_byte(SerialState *s, int ch) {}
void serial_receive_break(SerialState *s) {}
static m48t08_t *nvram;
/* Sun4m hardware initialisation */
void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename)
{
char buf[1024];
int ret, linux_boot, bios_size;
unsigned long bios_offset;
linux_boot = (kernel_filename != NULL);
/* allocate RAM */
cpu_register_physical_memory(0, ram_size, 0);
bios_offset = ram_size;
iommu_init();
sched_init();
tcx_init(ds);
lance_init(&nd_table[0], 6);
nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
magic_init(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
#if 0
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME);
bios_size = get_image_size(buf);
ret = load_image(buf, phys_ram_base + bios_offset);
if (ret != bios_size) {
fprintf(stderr, "qemu: could not load prom '%s'\n", buf);
exit(1);
}
cpu_register_physical_memory(PROM_ADDR,
bios_size, bios_offset | IO_MEM_ROM);
#endif
/* We load Proll as the kernel and start it. It will issue a magic
IO to load the real kernel */
if (linux_boot) {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME);
ret = load_kernel(buf,
phys_ram_base + KERNEL_LOAD_ADDR);
if (ret < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
buf);
exit(1);
}
}
/* Setup a MMU entry for entire address space */
stl_raw(phys_ram_base + MMU_CONTEXT_TBL, (MMU_L1PTP >> 4) | 1);
stl_raw(phys_ram_base + MMU_L1PTP, (MMU_L2PTP >> 4) | 1);
#if 0
stl_raw(phys_ram_base + MMU_L1PTP + (0x50 << 2), (MMU_L2PTP >> 4) | 1); // frame buffer at 50..
#endif
stl_raw(phys_ram_base + MMU_L1PTP + (0xff << 2), (MMU_L2PTP >> 4) | 1); // ff.. == 00..
/* 3 = U:RWX S:RWX */
stl_raw(phys_ram_base + MMU_L2PTP, (3 << PTE_ACCESS_SHIFT) | 2);
#if 0
stl_raw(phys_ram_base + MMU_L2PTP + 0x84, (PHYS_JJ_TCX_FB >> 4) \
| (3 << PTE_ACCESS_SHIFT) | 2); // frame buf
stl_raw(phys_ram_base + MMU_L2PTP + 0x88, (PHYS_JJ_TCX_FB >> 4) \
| (3 << PTE_ACCESS_SHIFT) | 2); // frame buf
stl_raw(phys_ram_base + MMU_L2PTP + 0x140, (PHYS_JJ_TCX_FB >> 4) \
| (3 << PTE_ACCESS_SHIFT) | 2); // frame buf
// "Empirical constant"
stl_raw(phys_ram_base + ROMVEC_DATA, 0x10010407);
// Version: V3 prom
stl_raw(phys_ram_base + ROMVEC_DATA + 4, 3);
stl_raw(phys_ram_base + ROMVEC_DATA + 0x1c, ROMVEC_DATA+0x400);
stl_raw(phys_ram_base + ROMVEC_DATA + 0x400, ROMVEC_DATA+0x404);
stl_raw(phys_ram_base + ROMVEC_DATA + 0x404, 0x81c3e008); // retl
stl_raw(phys_ram_base + ROMVEC_DATA + 0x408, 0x01000000); // nop
#endif
}
|