1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
|
/*
* QEMU model of the Xilinx Zynq SPI controller
*
* Copyright (c) 2012 Peter A. G. Crosthwaite
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "hw/ptimer.h"
#include "qemu/log.h"
#include "qemu/fifo8.h"
#include "hw/ssi.h"
#include "qemu/bitops.h"
#ifndef XILINX_SPIPS_ERR_DEBUG
#define XILINX_SPIPS_ERR_DEBUG 0
#endif
#define DB_PRINT_L(level, ...) do { \
if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} \
} while (0);
/* config register */
#define R_CONFIG (0x00 / 4)
#define IFMODE (1 << 31)
#define ENDIAN (1 << 26)
#define MODEFAIL_GEN_EN (1 << 17)
#define MAN_START_COM (1 << 16)
#define MAN_START_EN (1 << 15)
#define MANUAL_CS (1 << 14)
#define CS (0xF << 10)
#define CS_SHIFT (10)
#define PERI_SEL (1 << 9)
#define REF_CLK (1 << 8)
#define FIFO_WIDTH (3 << 6)
#define BAUD_RATE_DIV (7 << 3)
#define CLK_PH (1 << 2)
#define CLK_POL (1 << 1)
#define MODE_SEL (1 << 0)
#define R_CONFIG_RSVD (0x7bf40000)
/* interrupt mechanism */
#define R_INTR_STATUS (0x04 / 4)
#define R_INTR_EN (0x08 / 4)
#define R_INTR_DIS (0x0C / 4)
#define R_INTR_MASK (0x10 / 4)
#define IXR_TX_FIFO_UNDERFLOW (1 << 6)
#define IXR_RX_FIFO_FULL (1 << 5)
#define IXR_RX_FIFO_NOT_EMPTY (1 << 4)
#define IXR_TX_FIFO_FULL (1 << 3)
#define IXR_TX_FIFO_NOT_FULL (1 << 2)
#define IXR_TX_FIFO_MODE_FAIL (1 << 1)
#define IXR_RX_FIFO_OVERFLOW (1 << 0)
#define IXR_ALL ((IXR_TX_FIFO_UNDERFLOW<<1)-1)
#define R_EN (0x14 / 4)
#define R_DELAY (0x18 / 4)
#define R_TX_DATA (0x1C / 4)
#define R_RX_DATA (0x20 / 4)
#define R_SLAVE_IDLE_COUNT (0x24 / 4)
#define R_TX_THRES (0x28 / 4)
#define R_RX_THRES (0x2C / 4)
#define R_TXD1 (0x80 / 4)
#define R_TXD2 (0x84 / 4)
#define R_TXD3 (0x88 / 4)
#define R_LQSPI_CFG (0xa0 / 4)
#define R_LQSPI_CFG_RESET 0x03A002EB
#define LQSPI_CFG_LQ_MODE (1 << 31)
#define LQSPI_CFG_TWO_MEM (1 << 30)
#define LQSPI_CFG_SEP_BUS (1 << 30)
#define LQSPI_CFG_U_PAGE (1 << 28)
#define LQSPI_CFG_MODE_EN (1 << 25)
#define LQSPI_CFG_MODE_WIDTH 8
#define LQSPI_CFG_MODE_SHIFT 16
#define LQSPI_CFG_DUMMY_WIDTH 3
#define LQSPI_CFG_DUMMY_SHIFT 8
#define LQSPI_CFG_INST_CODE 0xFF
#define R_LQSPI_STS (0xA4 / 4)
#define LQSPI_STS_WR_RECVD (1 << 1)
#define R_MOD_ID (0xFC / 4)
#define R_MAX (R_MOD_ID+1)
/* size of TXRX FIFOs */
#define RXFF_A 32
#define TXFF_A 32
#define RXFF_A_Q (64 * 4)
#define TXFF_A_Q (64 * 4)
/* 16MB per linear region */
#define LQSPI_ADDRESS_BITS 24
/* Bite off 4k chunks at a time */
#define LQSPI_CACHE_SIZE 1024
#define SNOOP_CHECKING 0xFF
#define SNOOP_NONE 0xFE
#define SNOOP_STRIPING 0
typedef enum {
READ = 0x3,
FAST_READ = 0xb,
DOR = 0x3b,
QOR = 0x6b,
DIOR = 0xbb,
QIOR = 0xeb,
PP = 0x2,
DPP = 0xa2,
QPP = 0x32,
} FlashCMD;
typedef struct {
SysBusDevice parent_obj;
MemoryRegion iomem;
MemoryRegion mmlqspi;
qemu_irq irq;
int irqline;
uint8_t num_cs;
uint8_t num_busses;
uint8_t snoop_state;
qemu_irq *cs_lines;
SSIBus **spi;
Fifo8 rx_fifo;
Fifo8 tx_fifo;
uint8_t num_txrx_bytes;
uint32_t regs[R_MAX];
} XilinxSPIPS;
typedef struct {
XilinxSPIPS parent_obj;
uint8_t lqspi_buf[LQSPI_CACHE_SIZE];
hwaddr lqspi_cached_addr;
} XilinxQSPIPS;
typedef struct XilinxSPIPSClass {
SysBusDeviceClass parent_class;
const MemoryRegionOps *reg_ops;
uint32_t rx_fifo_size;
uint32_t tx_fifo_size;
} XilinxSPIPSClass;
#define TYPE_XILINX_SPIPS "xlnx.ps7-spi"
#define TYPE_XILINX_QSPIPS "xlnx.ps7-qspi"
#define XILINX_SPIPS(obj) \
OBJECT_CHECK(XilinxSPIPS, (obj), TYPE_XILINX_SPIPS)
#define XILINX_SPIPS_CLASS(klass) \
OBJECT_CLASS_CHECK(XilinxSPIPSClass, (klass), TYPE_XILINX_SPIPS)
#define XILINX_SPIPS_GET_CLASS(obj) \
OBJECT_GET_CLASS(XilinxSPIPSClass, (obj), TYPE_XILINX_SPIPS)
#define XILINX_QSPIPS(obj) \
OBJECT_CHECK(XilinxQSPIPS, (obj), TYPE_XILINX_QSPIPS)
static inline int num_effective_busses(XilinxSPIPS *s)
{
return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
}
static inline bool xilinx_spips_cs_is_set(XilinxSPIPS *s, int i, int field)
{
return ~field & (1 << i) && (s->regs[R_CONFIG] & MANUAL_CS
|| !fifo8_is_empty(&s->tx_fifo));
}
static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
{
int i, j;
bool found = false;
int field = s->regs[R_CONFIG] >> CS_SHIFT;
for (i = 0; i < s->num_cs; i++) {
for (j = 0; j < num_effective_busses(s); j++) {
int upage = !!(s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE);
int cs_to_set = (j * s->num_cs + i + upage) %
(s->num_cs * s->num_busses);
if (xilinx_spips_cs_is_set(s, i, field) && !found) {
DB_PRINT_L(0, "selecting slave %d\n", i);
qemu_set_irq(s->cs_lines[cs_to_set], 0);
} else {
DB_PRINT_L(0, "deselecting slave %d\n", i);
qemu_set_irq(s->cs_lines[cs_to_set], 1);
}
}
if (xilinx_spips_cs_is_set(s, i, field)) {
found = true;
}
}
if (!found) {
s->snoop_state = SNOOP_CHECKING;
DB_PRINT_L(1, "moving to snoop check state\n");
}
}
static void xilinx_spips_update_ixr(XilinxSPIPS *s)
{
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE) {
return;
}
/* These are set/cleared as they occur */
s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW |
IXR_TX_FIFO_MODE_FAIL);
/* these are pure functions of fifo state, set them here */
s->regs[R_INTR_STATUS] |=
(fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
(s->rx_fifo.num >= s->regs[R_RX_THRES] ? IXR_RX_FIFO_NOT_EMPTY : 0) |
(fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
(s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
/* drive external interrupt pin */
int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
IXR_ALL);
if (new_irqline != s->irqline) {
s->irqline = new_irqline;
qemu_set_irq(s->irq, s->irqline);
}
}
static void xilinx_spips_reset(DeviceState *d)
{
XilinxSPIPS *s = XILINX_SPIPS(d);
int i;
for (i = 0; i < R_MAX; i++) {
s->regs[i] = 0;
}
fifo8_reset(&s->rx_fifo);
fifo8_reset(&s->rx_fifo);
/* non zero resets */
s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
s->regs[R_TX_THRES] = 1;
s->regs[R_RX_THRES] = 1;
/* FIXME: move magic number definition somewhere sensible */
s->regs[R_MOD_ID] = 0x01090106;
s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
s->snoop_state = SNOOP_CHECKING;
xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s);
}
/* N way (num) in place bit striper. Lay out row wise bits (LSB to MSB)
* column wise (from element 0 to N-1). num is the length of x, and dir
* reverses the direction of the transform. Best illustrated by example:
* Each digit in the below array is a single bit (num == 3):
*
* {{ 76543210, } ----- stripe (dir == false) -----> {{ FCheb630, }
* { hgfedcba, } { GDAfc741, }
* { HGFEDCBA, }} <---- upstripe (dir == true) ----- { HEBgda52, }}
*/
static inline void stripe8(uint8_t *x, int num, bool dir)
{
uint8_t r[num];
memset(r, 0, sizeof(uint8_t) * num);
int idx[2] = {0, 0};
int bit[2] = {0, 0};
int d = dir;
for (idx[0] = 0; idx[0] < num; ++idx[0]) {
for (bit[0] = 0; bit[0] < 8; ++bit[0]) {
r[idx[d]] |= x[idx[!d]] & 1 << bit[!d] ? 1 << bit[d] : 0;
idx[1] = (idx[1] + 1) % num;
if (!idx[1]) {
bit[1]++;
}
}
}
memcpy(x, r, sizeof(uint8_t) * num);
}
static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
{
int debug_level = 0;
for (;;) {
int i;
uint8_t tx = 0;
uint8_t tx_rx[num_effective_busses(s)];
if (fifo8_is_empty(&s->tx_fifo)) {
if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
}
xilinx_spips_update_ixr(s);
return;
} else if (s->snoop_state == SNOOP_STRIPING) {
for (i = 0; i < num_effective_busses(s); ++i) {
tx_rx[i] = fifo8_pop(&s->tx_fifo);
}
stripe8(tx_rx, num_effective_busses(s), false);
} else {
tx = fifo8_pop(&s->tx_fifo);
for (i = 0; i < num_effective_busses(s); ++i) {
tx_rx[i] = tx;
}
}
for (i = 0; i < num_effective_busses(s); ++i) {
DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
tx_rx[i] = ssi_transfer(s->spi[i], (uint32_t)tx_rx[i]);
DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
}
if (fifo8_is_full(&s->rx_fifo)) {
s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
DB_PRINT_L(0, "rx FIFO overflow");
} else if (s->snoop_state == SNOOP_STRIPING) {
stripe8(tx_rx, num_effective_busses(s), true);
for (i = 0; i < num_effective_busses(s); ++i) {
fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
}
} else {
fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
}
DB_PRINT_L(debug_level, "initial snoop state: %x\n",
(unsigned)s->snoop_state);
switch (s->snoop_state) {
case (SNOOP_CHECKING):
switch (tx) { /* new instruction code */
case READ: /* 3 address bytes, no dummy bytes/cycles */
case PP:
case DPP:
case QPP:
s->snoop_state = 3;
break;
case FAST_READ: /* 3 address bytes, 1 dummy byte */
case DOR:
case QOR:
case DIOR: /* FIXME: these vary between vendor - set to spansion */
s->snoop_state = 4;
break;
case QIOR: /* 3 address bytes, 2 dummy bytes */
s->snoop_state = 6;
break;
default:
s->snoop_state = SNOOP_NONE;
}
break;
case (SNOOP_STRIPING):
case (SNOOP_NONE):
/* Once we hit the boring stuff - squelch debug noise */
if (!debug_level) {
DB_PRINT_L(0, "squelching debug info ....\n");
debug_level = 1;
}
break;
default:
s->snoop_state--;
}
DB_PRINT_L(debug_level, "final snoop state: %x\n",
(unsigned)s->snoop_state);
}
}
static inline void rx_data_bytes(XilinxSPIPS *s, uint8_t *value, int max)
{
int i;
for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
value[i] = fifo8_pop(&s->rx_fifo);
}
}
static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
unsigned size)
{
XilinxSPIPS *s = opaque;
uint32_t mask = ~0;
uint32_t ret;
uint8_t rx_buf[4];
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = ~(R_CONFIG_RSVD | MAN_START_COM);
break;
case R_INTR_STATUS:
ret = s->regs[addr] & IXR_ALL;
s->regs[addr] = 0;
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
return ret;
case R_INTR_MASK:
mask = IXR_ALL;
break;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_MOD_ID:
mask = 0x01FFFFFF;
break;
case R_INTR_EN:
case R_INTR_DIS:
case R_TX_DATA:
mask = 0;
break;
case R_RX_DATA:
memset(rx_buf, 0, sizeof(rx_buf));
rx_data_bytes(s, rx_buf, s->num_txrx_bytes);
ret = s->regs[R_CONFIG] & ENDIAN ? cpu_to_be32(*(uint32_t *)rx_buf)
: cpu_to_le32(*(uint32_t *)rx_buf);
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
xilinx_spips_update_ixr(s);
return ret;
}
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4,
s->regs[addr] & mask);
return s->regs[addr] & mask;
}
static inline void tx_data_bytes(XilinxSPIPS *s, uint32_t value, int num)
{
int i;
for (i = 0; i < num && !fifo8_is_full(&s->tx_fifo); ++i) {
if (s->regs[R_CONFIG] & ENDIAN) {
fifo8_push(&s->tx_fifo, (uint8_t)(value >> 24));
value <<= 8;
} else {
fifo8_push(&s->tx_fifo, (uint8_t)value);
value >>= 8;
}
}
}
static void xilinx_spips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
int mask = ~0;
int man_start_com = 0;
XilinxSPIPS *s = opaque;
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = ~(R_CONFIG_RSVD | MAN_START_COM);
if (value & MAN_START_COM) {
man_start_com = 1;
}
break;
case R_INTR_STATUS:
mask = IXR_ALL;
s->regs[R_INTR_STATUS] &= ~(mask & value);
goto no_reg_update;
case R_INTR_DIS:
mask = IXR_ALL;
s->regs[R_INTR_MASK] &= ~(mask & value);
goto no_reg_update;
case R_INTR_EN:
mask = IXR_ALL;
s->regs[R_INTR_MASK] |= mask & value;
goto no_reg_update;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_RX_DATA:
case R_INTR_MASK:
case R_MOD_ID:
mask = 0;
break;
case R_TX_DATA:
tx_data_bytes(s, (uint32_t)value, s->num_txrx_bytes);
goto no_reg_update;
case R_TXD1:
tx_data_bytes(s, (uint32_t)value, 1);
goto no_reg_update;
case R_TXD2:
tx_data_bytes(s, (uint32_t)value, 2);
goto no_reg_update;
case R_TXD3:
tx_data_bytes(s, (uint32_t)value, 3);
goto no_reg_update;
}
s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
no_reg_update:
xilinx_spips_update_cs_lines(s);
if ((man_start_com && s->regs[R_CONFIG] & MAN_START_EN) ||
(fifo8_is_empty(&s->tx_fifo) && s->regs[R_CONFIG] & MAN_START_EN)) {
xilinx_spips_flush_txfifo(s);
}
xilinx_spips_update_cs_lines(s);
xilinx_spips_update_ixr(s);
}
static const MemoryRegionOps spips_ops = {
.read = xilinx_spips_read,
.write = xilinx_spips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void xilinx_qspips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
xilinx_spips_write(opaque, addr, value, size);
addr >>= 2;
if (addr == R_LQSPI_CFG) {
q->lqspi_cached_addr = ~0ULL;
}
}
static const MemoryRegionOps qspips_ops = {
.read = xilinx_spips_read,
.write = xilinx_qspips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
#define LQSPI_CACHE_SIZE 1024
static uint64_t
lqspi_read(void *opaque, hwaddr addr, unsigned int size)
{
int i;
XilinxQSPIPS *q = opaque;
XilinxSPIPS *s = opaque;
uint32_t ret;
if (addr >= q->lqspi_cached_addr &&
addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
ret = cpu_to_le32(*(uint32_t *)retp);
DB_PRINT_L(1, "addr: %08x, data: %08x\n", (unsigned)addr,
(unsigned)ret);
return ret;
} else {
int flash_addr = (addr / num_effective_busses(s));
int slave = flash_addr >> LQSPI_ADDRESS_BITS;
int cache_entry = 0;
uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0;
DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo);
/* instruction */
DB_PRINT_L(0, "pushing read instruction: %02x\n",
(unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
LQSPI_CFG_INST_CODE));
fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
/* read address */
DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
/* mode bits */
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
LQSPI_CFG_MODE_SHIFT,
LQSPI_CFG_MODE_WIDTH));
}
/* dummy bytes */
for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
LQSPI_CFG_DUMMY_WIDTH)); ++i) {
DB_PRINT_L(0, "pushing dummy byte\n");
fifo8_push(&s->tx_fifo, 0);
}
xilinx_spips_update_cs_lines(s);
xilinx_spips_flush_txfifo(s);
fifo8_reset(&s->rx_fifo);
DB_PRINT_L(0, "starting QSPI data read\n");
while (cache_entry < LQSPI_CACHE_SIZE) {
for (i = 0; i < 64; ++i) {
tx_data_bytes(s, 0, 1);
}
xilinx_spips_flush_txfifo(s);
for (i = 0; i < 64; ++i) {
rx_data_bytes(s, &q->lqspi_buf[cache_entry++], 1);
}
}
s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
s->regs[R_LQSPI_STS] |= u_page_save;
xilinx_spips_update_cs_lines(s);
q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
return lqspi_read(opaque, addr, size);
}
}
static const MemoryRegionOps lqspi_ops = {
.read = lqspi_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4
}
};
static void xilinx_spips_realize(DeviceState *dev, Error **errp)
{
XilinxSPIPS *s = XILINX_SPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
int i;
DB_PRINT_L(0, "realized spips\n");
s->spi = g_new(SSIBus *, s->num_busses);
for (i = 0; i < s->num_busses; ++i) {
char bus_name[16];
snprintf(bus_name, 16, "spi%d", i);
s->spi[i] = ssi_create_bus(dev, bus_name);
}
s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[0]);
ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[1]);
sysbus_init_irq(sbd, &s->irq);
for (i = 0; i < s->num_cs * s->num_busses; ++i) {
sysbus_init_irq(sbd, &s->cs_lines[i]);
}
memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s,
"spi", R_MAX*4);
sysbus_init_mmio(sbd, &s->iomem);
s->irqline = -1;
fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
}
static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
{
XilinxSPIPS *s = XILINX_SPIPS(dev);
XilinxQSPIPS *q = XILINX_QSPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
DB_PRINT_L(0, "realized qspips\n");
s->num_busses = 2;
s->num_cs = 2;
s->num_txrx_bytes = 4;
xilinx_spips_realize(dev, errp);
memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi",
(1 << LQSPI_ADDRESS_BITS) * 2);
sysbus_init_mmio(sbd, &s->mmlqspi);
q->lqspi_cached_addr = ~0ULL;
}
static int xilinx_spips_post_load(void *opaque, int version_id)
{
xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
return 0;
}
static const VMStateDescription vmstate_xilinx_spips = {
.name = "xilinx_spips",
.version_id = 2,
.minimum_version_id = 2,
.minimum_version_id_old = 2,
.post_load = xilinx_spips_post_load,
.fields = (VMStateField[]) {
VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, R_MAX),
VMSTATE_UINT8(snoop_state, XilinxSPIPS),
VMSTATE_END_OF_LIST()
}
};
static Property xilinx_spips_properties[] = {
DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_qspips_realize;
xsc->reg_ops = &qspips_ops;
xsc->rx_fifo_size = RXFF_A_Q;
xsc->tx_fifo_size = TXFF_A_Q;
}
static void xilinx_spips_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_spips_realize;
dc->reset = xilinx_spips_reset;
dc->props = xilinx_spips_properties;
dc->vmsd = &vmstate_xilinx_spips;
xsc->reg_ops = &spips_ops;
xsc->rx_fifo_size = RXFF_A;
xsc->tx_fifo_size = TXFF_A;
}
static const TypeInfo xilinx_spips_info = {
.name = TYPE_XILINX_SPIPS,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XilinxSPIPS),
.class_init = xilinx_spips_class_init,
.class_size = sizeof(XilinxSPIPSClass),
};
static const TypeInfo xilinx_qspips_info = {
.name = TYPE_XILINX_QSPIPS,
.parent = TYPE_XILINX_SPIPS,
.instance_size = sizeof(XilinxQSPIPS),
.class_init = xilinx_qspips_class_init,
};
static void xilinx_spips_register_types(void)
{
type_register_static(&xilinx_spips_info);
type_register_static(&xilinx_qspips_info);
}
type_init(xilinx_spips_register_types)
|