aboutsummaryrefslogtreecommitdiff
path: root/hw/ssi/imx_spi.c
blob: 4226199811278ae05c41e0e2c72375fe75ef5b2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*
 * IMX SPI Controller
 *
 * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include "hw/ssi/imx_spi.h"
#include "sysemu/sysemu.h"
#include "qemu/log.h"

#ifndef DEBUG_IMX_SPI
#define DEBUG_IMX_SPI 0
#endif

#define DPRINTF(fmt, args...) \
    do { \
        if (DEBUG_IMX_SPI) { \
            fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
                                             __func__, ##args); \
        } \
    } while (0)

static char const *imx_spi_reg_name(uint32_t reg)
{
    static char unknown[20];

    switch (reg) {
    case ECSPI_RXDATA:
        return  "ECSPI_RXDATA";
    case ECSPI_TXDATA:
        return  "ECSPI_TXDATA";
    case ECSPI_CONREG:
        return  "ECSPI_CONREG";
    case ECSPI_CONFIGREG:
        return  "ECSPI_CONFIGREG";
    case ECSPI_INTREG:
        return  "ECSPI_INTREG";
    case ECSPI_DMAREG:
        return  "ECSPI_DMAREG";
    case ECSPI_STATREG:
        return  "ECSPI_STATREG";
    case ECSPI_PERIODREG:
        return  "ECSPI_PERIODREG";
    case ECSPI_TESTREG:
        return  "ECSPI_TESTREG";
    case ECSPI_MSGDATA:
        return  "ECSPI_MSGDATA";
    default:
        sprintf(unknown, "%d ?", reg);
        return unknown;
    }
}

static const VMStateDescription vmstate_imx_spi = {
    .name = TYPE_IMX_SPI,
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_FIFO32(tx_fifo, IMXSPIState),
        VMSTATE_FIFO32(rx_fifo, IMXSPIState),
        VMSTATE_INT16(burst_length, IMXSPIState),
        VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX),
        VMSTATE_END_OF_LIST()
    },
};

static void imx_spi_txfifo_reset(IMXSPIState *s)
{
    fifo32_reset(&s->tx_fifo);
    s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
    s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
}

static void imx_spi_rxfifo_reset(IMXSPIState *s)
{
    fifo32_reset(&s->rx_fifo);
    s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
    s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
    s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO;
}

static void imx_spi_update_irq(IMXSPIState *s)
{
    int level;

    if (fifo32_is_empty(&s->rx_fifo)) {
        s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
    } else {
        s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR;
    }

    if (fifo32_is_full(&s->rx_fifo)) {
        s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF;
    } else {
        s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
    }

    if (fifo32_is_empty(&s->tx_fifo)) {
        s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
    } else {
        s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE;
    }

    if (fifo32_is_full(&s->tx_fifo)) {
        s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF;
    } else {
        s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
    }

    level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0;

    qemu_set_irq(s->irq, level);

    DPRINTF("IRQ level is %d\n", level);
}

static uint8_t imx_spi_selected_channel(IMXSPIState *s)
{
    return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT);
}

static uint32_t imx_spi_burst_length(IMXSPIState *s)
{
    return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
}

static bool imx_spi_is_enabled(IMXSPIState *s)
{
    return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN;
}

static bool imx_spi_channel_is_master(IMXSPIState *s)
{
    uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE);

    return (mode & (1 << imx_spi_selected_channel(s))) ? true : false;
}

static bool imx_spi_is_multiple_master_burst(IMXSPIState *s)
{
    uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL);

    return imx_spi_channel_is_master(s) &&
           !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) &&
           ((wave & (1 << imx_spi_selected_channel(s))) ? true : false);
}

static void imx_spi_flush_txfifo(IMXSPIState *s)
{
    uint32_t tx;
    uint32_t rx;

    DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
            fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));

    while (!fifo32_is_empty(&s->tx_fifo)) {
        int tx_burst = 0;
        int index = 0;

        if (s->burst_length <= 0) {
            s->burst_length = imx_spi_burst_length(s);

            DPRINTF("Burst length = %d\n", s->burst_length);

            if (imx_spi_is_multiple_master_burst(s)) {
                s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH;
            }
        }

        tx = fifo32_pop(&s->tx_fifo);

        DPRINTF("data tx:0x%08x\n", tx);

        tx_burst = MIN(s->burst_length, 32);

        rx = 0;

        while (tx_burst) {
            uint8_t byte = tx & 0xff;

            DPRINTF("writing 0x%02x\n", (uint32_t)byte);

            /* We need to write one byte at a time */
            byte = ssi_transfer(s->bus, byte);

            DPRINTF("0x%02x read\n", (uint32_t)byte);

            tx = tx >> 8;
            rx |= (byte << (index * 8));

            /* Remove 8 bits from the actual burst */
            tx_burst -= 8;
            s->burst_length -= 8;
            index++;
        }

        DPRINTF("data rx:0x%08x\n", rx);

        if (fifo32_is_full(&s->rx_fifo)) {
            s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO;
        } else {
            fifo32_push(&s->rx_fifo, (uint8_t)rx);
        }

        if (s->burst_length <= 0) {
            s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH;

            if (!imx_spi_is_multiple_master_burst(s)) {
                s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
                break;
            }
        }
    }

    if (fifo32_is_empty(&s->tx_fifo)) {
        s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
    }

    /* TODO: We should also use TDR and RDR bits */

    DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
            fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
}

static void imx_spi_reset(DeviceState *dev)
{
    IMXSPIState *s = IMX_SPI(dev);

    DPRINTF("\n");

    memset(s->regs, 0, sizeof(s->regs));

    s->regs[ECSPI_STATREG] = 0x00000003;

    imx_spi_rxfifo_reset(s);
    imx_spi_txfifo_reset(s);

    imx_spi_update_irq(s);

    s->burst_length = 0;
}

static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size)
{
    uint32_t value = 0;
    IMXSPIState *s = opaque;
    uint32_t index = offset >> 2;

    if (index >=  ECSPI_MAX) {
        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
                      HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
        return 0;
    }

    switch (index) {
    case ECSPI_RXDATA:
        if (!imx_spi_is_enabled(s)) {
            value = 0;
        } else if (fifo32_is_empty(&s->rx_fifo)) {
            /* value is undefined */
            value = 0xdeadbeef;
        } else {
            /* read from the RX FIFO */
            value = fifo32_pop(&s->rx_fifo);
        }

        break;
    case ECSPI_TXDATA:
        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from TX FIFO\n",
                      TYPE_IMX_SPI, __func__);

        /* Reading from TXDATA gives 0 */

        break;
    case ECSPI_MSGDATA:
        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from MSG FIFO\n",
                      TYPE_IMX_SPI, __func__);

        /* Reading from MSGDATA gives 0 */

        break;
    default:
        value = s->regs[index];
        break;
    }

    DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value);

    imx_spi_update_irq(s);

    return (uint64_t)value;
}

static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value,
                           unsigned size)
{
    IMXSPIState *s = opaque;
    uint32_t index = offset >> 2;
    uint32_t change_mask;

    if (index >=  ECSPI_MAX) {
        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
                      HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
        return;
    }

    DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index),
            (uint32_t)value);

    change_mask = s->regs[index] ^ value;

    switch (index) {
    case ECSPI_RXDATA:
        qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
                      TYPE_IMX_SPI, __func__);
        break;
    case ECSPI_TXDATA:
    case ECSPI_MSGDATA:
        /* Is there any difference between TXDATA and MSGDATA ? */
        /* I'll have to look in the linux driver */
        if (!imx_spi_is_enabled(s)) {
            /* Ignore writes if device is disabled */
            break;
        } else if (fifo32_is_full(&s->tx_fifo)) {
            /* Ignore writes if queue is full */
            break;
        }

        fifo32_push(&s->tx_fifo, (uint32_t)value);

        if (imx_spi_channel_is_master(s) &&
            (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) {
            /*
             * Start emitting if current channel is master and SMC bit is
             * set.
             */
            imx_spi_flush_txfifo(s);
        }

        break;
    case ECSPI_STATREG:
        /* the RO and TC bits are write-one-to-clear */
        value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC;
        s->regs[ECSPI_STATREG] &= ~value;

        break;
    case ECSPI_CONREG:
        s->regs[ECSPI_CONREG] = value;

        if (!imx_spi_is_enabled(s)) {
            /* device is disabled, so this is a reset */
            imx_spi_reset(DEVICE(s));
            return;
        }

        if (imx_spi_channel_is_master(s)) {
            int i;

            /* We are in master mode */

            for (i = 0; i < 4; i++) {
                qemu_set_irq(s->cs_lines[i],
                             i == imx_spi_selected_channel(s) ? 0 : 1);
            }

            if ((value & change_mask & ECSPI_CONREG_SMC) &&
                !fifo32_is_empty(&s->tx_fifo)) {
                /* SMC bit is set and TX FIFO has some slots filled in */
                imx_spi_flush_txfifo(s);
            } else if ((value & change_mask & ECSPI_CONREG_XCH) &&
                !(value & ECSPI_CONREG_SMC)) {
                /* This is a request to start emitting */
                imx_spi_flush_txfifo(s);
            }
        }

        break;
    default:
        s->regs[index] = value;

        break;
    }

    imx_spi_update_irq(s);
}

static const struct MemoryRegionOps imx_spi_ops = {
    .read = imx_spi_read,
    .write = imx_spi_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        /*
         * Our device would not work correctly if the guest was doing
         * unaligned access. This might not be a limitation on the real
         * device but in practice there is no reason for a guest to access
         * this device unaligned.
         */
        .min_access_size = 4,
        .max_access_size = 4,
        .unaligned = false,
    },
};

static void imx_spi_realize(DeviceState *dev, Error **errp)
{
    IMXSPIState *s = IMX_SPI(dev);
    int i;

    s->bus = ssi_create_bus(dev, "spi");

    memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s,
                          TYPE_IMX_SPI, 0x1000);
    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
    sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);

    ssi_auto_connect_slaves(dev, s->cs_lines, s->bus);

    for (i = 0; i < 4; ++i) {
        sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
    }

    s->burst_length = 0;

    fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE);
    fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE);
}

static void imx_spi_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->realize = imx_spi_realize;
    dc->vmsd = &vmstate_imx_spi;
    dc->reset = imx_spi_reset;
    dc->desc = "i.MX SPI Controller";
}

static const TypeInfo imx_spi_info = {
    .name          = TYPE_IMX_SPI,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(IMXSPIState),
    .class_init    = imx_spi_class_init,
};

static void imx_spi_register_types(void)
{
    type_register_static(&imx_spi_info);
}

type_init(imx_spi_register_types)