aboutsummaryrefslogtreecommitdiff
path: root/hw/spapr_pci.c
blob: 661c05bc308635fa1c4d73ad183d985c8362a673 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/*
 * QEMU sPAPR PCI host originated from Uninorth PCI host
 *
 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
 * Copyright (C) 2011 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "hw.h"
#include "pci.h"
#include "msi.h"
#include "msix.h"
#include "pci_host.h"
#include "hw/spapr.h"
#include "hw/spapr_pci.h"
#include "exec-memory.h"
#include <libfdt.h>
#include "trace.h"

#include "hw/pci_internals.h"

/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
#define RTAS_QUERY_FN           0
#define RTAS_CHANGE_FN          1
#define RTAS_RESET_FN           2
#define RTAS_CHANGE_MSI_FN      3
#define RTAS_CHANGE_MSIX_FN     4

/* Interrupt types to return on RTAS_CHANGE_* */
#define RTAS_TYPE_MSI           1
#define RTAS_TYPE_MSIX          2

static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
{
    sPAPRPHBState *sphb;

    QLIST_FOREACH(sphb, &spapr->phbs, list) {
        if (sphb->buid != buid) {
            continue;
        }
        return sphb;
    }

    return NULL;
}

static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
                           uint32_t config_addr)
{
    sPAPRPHBState *sphb = find_phb(spapr, buid);
    PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
    BusState *bus = BUS(phb->bus);
    BusChild *kid;
    int devfn = (config_addr >> 8) & 0xFF;

    if (!phb) {
        return NULL;
    }

    QTAILQ_FOREACH(kid, &bus->children, sibling) {
        PCIDevice *dev = (PCIDevice *)kid->child;
        if (dev->devfn == devfn) {
            return dev;
        }
    }

    return NULL;
}

static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
    /* This handles the encoding of extended config space addresses */
    return ((arg >> 20) & 0xf00) | (arg & 0xff);
}

static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                   uint32_t addr, uint32_t size,
                                   target_ulong rets)
{
    PCIDevice *pci_dev;
    uint32_t val;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
    }

    val = pci_host_config_read_common(pci_dev, addr,
                                      pci_config_size(pci_dev), size);

    rtas_st(rets, 0, 0);
    rtas_st(rets, 1, val);
}

static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
                                     uint32_t token, uint32_t nargs,
                                     target_ulong args,
                                     uint32_t nret, target_ulong rets)
{
    uint64_t buid;
    uint32_t size, addr;

    if ((nargs != 4) || (nret != 2)) {
        rtas_st(rets, 0, -1);
        return;
    }

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
    size = rtas_ld(args, 3);
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, buid, addr, size, rets);
}

static void rtas_read_pci_config(sPAPREnvironment *spapr,
                                 uint32_t token, uint32_t nargs,
                                 target_ulong args,
                                 uint32_t nret, target_ulong rets)
{
    uint32_t size, addr;

    if ((nargs != 2) || (nret != 2)) {
        rtas_st(rets, 0, -1);
        return;
    }

    size = rtas_ld(args, 1);
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, 0, addr, size, rets);
}

static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                    uint32_t addr, uint32_t size,
                                    uint32_t val, target_ulong rets)
{
    PCIDevice *pci_dev;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
                                 val, size);

    rtas_st(rets, 0, 0);
}

static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
                                      uint32_t token, uint32_t nargs,
                                      target_ulong args,
                                      uint32_t nret, target_ulong rets)
{
    uint64_t buid;
    uint32_t val, size, addr;

    if ((nargs != 5) || (nret != 1)) {
        rtas_st(rets, 0, -1);
        return;
    }

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
    val = rtas_ld(args, 4);
    size = rtas_ld(args, 3);
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, buid, addr, size, val, rets);
}

static void rtas_write_pci_config(sPAPREnvironment *spapr,
                                  uint32_t token, uint32_t nargs,
                                  target_ulong args,
                                  uint32_t nret, target_ulong rets)
{
    uint32_t val, size, addr;

    if ((nargs != 3) || (nret != 1)) {
        rtas_st(rets, 0, -1);
        return;
    }


    val = rtas_ld(args, 2);
    size = rtas_ld(args, 1);
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, 0, addr, size, val, rets);
}

/*
 * Find an entry with config_addr or returns the empty one if not found AND
 * alloc_new is set.
 * At the moment the msi_table entries are never released so there is
 * no point to look till the end of the list if we need to find the free entry.
 */
static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
                             bool alloc_new)
{
    int i;

    for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
        if (!phb->msi_table[i].nvec) {
            break;
        }
        if (phb->msi_table[i].config_addr == config_addr) {
            return i;
        }
    }
    if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
        trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
        return i;
    }

    return -1;
}

/*
 * Set MSI/MSIX message data.
 * This is required for msi_notify()/msix_notify() which
 * will write at the addresses via spapr_msi_write().
 */
static void spapr_msi_setmsg(PCIDevice *pdev, target_phys_addr_t addr,
                             bool msix, unsigned req_num)
{
    unsigned i;
    MSIMessage msg = { .address = addr, .data = 0 };

    if (!msix) {
        msi_set_message(pdev, msg);
        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
        return;
    }

    for (i = 0; i < req_num; ++i) {
        msg.address = addr | (i << 2);
        msix_set_message(pdev, i, msg);
        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
    }
}

static void rtas_ibm_change_msi(sPAPREnvironment *spapr,
                                uint32_t token, uint32_t nargs,
                                target_ulong args, uint32_t nret,
                                target_ulong rets)
{
    uint32_t config_addr = rtas_ld(args, 0);
    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
    unsigned int func = rtas_ld(args, 3);
    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
    unsigned int seq_num = rtas_ld(args, 5);
    unsigned int ret_intr_type;
    int ndev, irq;
    sPAPRPHBState *phb = NULL;
    PCIDevice *pdev = NULL;

    switch (func) {
    case RTAS_CHANGE_MSI_FN:
    case RTAS_CHANGE_FN:
        ret_intr_type = RTAS_TYPE_MSI;
        break;
    case RTAS_CHANGE_MSIX_FN:
        ret_intr_type = RTAS_TYPE_MSIX;
        break;
    default:
        fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
        rtas_st(rets, 0, -3); /* Parameter error */
        return;
    }

    /* Fins sPAPRPHBState */
    phb = find_phb(spapr, buid);
    if (phb) {
        pdev = find_dev(spapr, buid, config_addr);
    }
    if (!phb || !pdev) {
        rtas_st(rets, 0, -3); /* Parameter error */
        return;
    }

    /* Releasing MSIs */
    if (!req_num) {
        ndev = spapr_msicfg_find(phb, config_addr, false);
        if (ndev < 0) {
            trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
            rtas_st(rets, 0, -1); /* Hardware error */
            return;
        }
        trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
        rtas_st(rets, 0, 0);
        rtas_st(rets, 1, 0);
        return;
    }

    /* Enabling MSI */

    /* Find a device number in the map to add or reuse the existing one */
    ndev = spapr_msicfg_find(phb, config_addr, true);
    if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
        fprintf(stderr, "No free entry for a new MSI device\n");
        rtas_st(rets, 0, -1); /* Hardware error */
        return;
    }
    trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);

    /* Check if there is an old config and MSI number has not changed */
    if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
        /* Unexpected behaviour */
        fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
        rtas_st(rets, 0, -1); /* Hardware error */
        return;
    }

    /* There is no cached config, allocate MSIs */
    if (!phb->msi_table[ndev].nvec) {
        irq = spapr_allocate_irq_block(req_num, XICS_MSI);
        if (irq < 0) {
            fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
            rtas_st(rets, 0, -1); /* Hardware error */
            return;
        }
        phb->msi_table[ndev].irq = irq;
        phb->msi_table[ndev].nvec = req_num;
        phb->msi_table[ndev].config_addr = config_addr;
    }

    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
    spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16),
                     ret_intr_type == RTAS_TYPE_MSIX, req_num);

    rtas_st(rets, 0, 0);
    rtas_st(rets, 1, req_num);
    rtas_st(rets, 2, ++seq_num);
    rtas_st(rets, 3, ret_intr_type);

    trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
}

static void rtas_ibm_query_interrupt_source_number(sPAPREnvironment *spapr,
                                                   uint32_t token,
                                                   uint32_t nargs,
                                                   target_ulong args,
                                                   uint32_t nret,
                                                   target_ulong rets)
{
    uint32_t config_addr = rtas_ld(args, 0);
    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
    int ndev;
    sPAPRPHBState *phb = NULL;

    /* Fins sPAPRPHBState */
    phb = find_phb(spapr, buid);
    if (!phb) {
        rtas_st(rets, 0, -3); /* Parameter error */
        return;
    }

    /* Find device descriptor and start IRQ */
    ndev = spapr_msicfg_find(phb, config_addr, false);
    if (ndev < 0) {
        trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
        rtas_st(rets, 0, -1); /* Hardware error */
        return;
    }

    intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
                                                           intr_src_num);

    rtas_st(rets, 0, 0);
    rtas_st(rets, 1, intr_src_num);
    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
}

static int pci_spapr_swizzle(int slot, int pin)
{
    return (slot + pin) % PCI_NUM_PINS;
}

static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
    /*
     * Here we need to convert pci_dev + irq_num to some unique value
     * which is less than number of IRQs on the specific bus (4).  We
     * use standard PCI swizzling, that is (slot number + pin number)
     * % 4.
     */
    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
}

static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
    /*
     * Here we use the number returned by pci_spapr_map_irq to find a
     * corresponding qemu_irq.
     */
    sPAPRPHBState *phb = opaque;

    trace_spapr_pci_lsi_set(phb->busname, irq_num, phb->lsi_table[irq_num].irq);
    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
}

static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
                              unsigned size)
{
    switch (size) {
    case 1:
        return cpu_inb(addr);
    case 2:
        return cpu_inw(addr);
    case 4:
        return cpu_inl(addr);
    }
    assert(0);
}

static void spapr_io_write(void *opaque, target_phys_addr_t addr,
                           uint64_t data, unsigned size)
{
    switch (size) {
    case 1:
        cpu_outb(addr, data);
        return;
    case 2:
        cpu_outw(addr, data);
        return;
    case 4:
        cpu_outl(addr, data);
        return;
    }
    assert(0);
}

static const MemoryRegionOps spapr_io_ops = {
    .endianness = DEVICE_LITTLE_ENDIAN,
    .read = spapr_io_read,
    .write = spapr_io_write
};

/*
 * MSI/MSIX memory region implementation.
 * The handler handles both MSI and MSIX.
 * For MSI-X, the vector number is encoded as a part of the address,
 * data is set to 0.
 * For MSI, the vector number is encoded in least bits in data.
 */
static void spapr_msi_write(void *opaque, target_phys_addr_t addr,
                            uint64_t data, unsigned size)
{
    sPAPRPHBState *phb = opaque;
    int ndev = addr >> 16;
    int vec = ((addr & 0xFFFF) >> 2) | data;
    uint32_t irq = phb->msi_table[ndev].irq + vec;

    trace_spapr_pci_msi_write(addr, data, irq);

    qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
}

static const MemoryRegionOps spapr_msi_ops = {
    /* There is no .read as the read result is undefined by PCI spec */
    .read = NULL,
    .write = spapr_msi_write,
    .endianness = DEVICE_LITTLE_ENDIAN
};

/*
 * PHB PCI device
 */
static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque,
                                            int devfn)
{
    sPAPRPHBState *phb = opaque;

    return phb->dma;
}

static int spapr_phb_init(SysBusDevice *s)
{
    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
    PCIHostState *phb = PCI_HOST_BRIDGE(s);
    char *namebuf;
    int i;
    PCIBus *bus;

    sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
    namebuf = alloca(strlen(sphb->dtbusname) + 32);

    /* Initialize memory regions */
    sprintf(namebuf, "%s.mmio", sphb->dtbusname);
    memory_region_init(&sphb->memspace, namebuf, INT64_MAX);

    sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
    memory_region_init_alias(&sphb->memwindow, namebuf, &sphb->memspace,
                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
    memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
                                &sphb->memwindow);

    /* On ppc, we only have MMIO no specific IO space from the CPU
     * perspective.  In theory we ought to be able to embed the PCI IO
     * memory region direction in the system memory space.  However,
     * if any of the IO BAR subregions use the old_portio mechanism,
     * that won't be processed properly unless accessed from the
     * system io address space.  This hack to bounce things via
     * system_io works around the problem until all the users of
     * old_portion are updated */
    sprintf(namebuf, "%s.io", sphb->dtbusname);
    memory_region_init(&sphb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
    /* FIXME: fix to support multiple PHBs */
    memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);

    sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
    memory_region_init_io(&sphb->iowindow, &spapr_io_ops, sphb,
                          namebuf, SPAPR_PCI_IO_WIN_SIZE);
    memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
                                &sphb->iowindow);

    /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
     * we need to allocate some memory to catch those writes coming
     * from msi_notify()/msix_notify() */
    if (msi_supported) {
        sprintf(namebuf, "%s.msi", sphb->dtbusname);
        memory_region_init_io(&sphb->msiwindow, &spapr_msi_ops, sphb,
                              namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000);
        memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr,
                                    &sphb->msiwindow);
    }

    bus = pci_register_bus(DEVICE(s),
                           sphb->busname ? sphb->busname : sphb->dtbusname,
                           pci_spapr_set_irq, pci_spapr_map_irq, sphb,
                           &sphb->memspace, &sphb->iospace,
                           PCI_DEVFN(0, 0), PCI_NUM_PINS);
    phb->bus = bus;

    sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN | (pci_find_domain(bus) << 16);
    sphb->dma_window_start = 0;
    sphb->dma_window_size = 0x40000000;
    sphb->dma = spapr_tce_new_dma_context(sphb->dma_liobn, sphb->dma_window_size);
    pci_setup_iommu(bus, spapr_pci_dma_context_fn, sphb);

    QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);

    /* Initialize the LSI table */
    for (i = 0; i < PCI_NUM_PINS; i++) {
        uint32_t irq;

        irq = spapr_allocate_lsi(0);
        if (!irq) {
            return -1;
        }

        sphb->lsi_table[i].irq = irq;
    }

    return 0;
}

static Property spapr_phb_properties[] = {
    DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
    DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
    DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
    DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
    DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
    DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
    DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, 0),
    DEFINE_PROP_END_OF_LIST(),
};

static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
    DeviceClass *dc = DEVICE_CLASS(klass);

    sdc->init = spapr_phb_init;
    dc->props = spapr_phb_properties;
}

static const TypeInfo spapr_phb_info = {
    .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
    .parent        = TYPE_PCI_HOST_BRIDGE,
    .instance_size = sizeof(sPAPRPHBState),
    .class_init    = spapr_phb_class_init,
};

void spapr_create_phb(sPAPREnvironment *spapr,
                      const char *busname, uint64_t buid,
                      uint64_t mem_win_addr, uint64_t mem_win_size,
                      uint64_t io_win_addr, uint64_t msi_win_addr)
{
    DeviceState *dev;

    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (busname) {
        qdev_prop_set_string(dev, "busname", g_strdup(busname));
    }
    qdev_prop_set_uint64(dev, "buid", buid);
    qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
    qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
    qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
    qdev_prop_set_uint64(dev, "msi_win_addr", msi_win_addr);

    qdev_init_nofail(dev);
}

/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x)         b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
#define b_fff(x)        b_x((x), 8, 3)  /* function number */
#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */

int spapr_populate_pci_dt(sPAPRPHBState *phb,
                          uint32_t xics_phandle,
                          void *fdt)
{
    int bus_off, i, j;
    char nodename[256];
    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
    struct {
        uint32_t hi;
        uint64_t child;
        uint64_t parent;
        uint64_t size;
    } QEMU_PACKED ranges[] = {
        {
            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
            cpu_to_be64(phb->io_win_addr),
            cpu_to_be64(memory_region_size(&phb->iospace)),
        },
        {
            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
            cpu_to_be64(phb->mem_win_addr),
            cpu_to_be64(memory_region_size(&phb->memwindow)),
        },
    };
    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
    uint32_t interrupt_map_mask[] = {
        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];

    /* Start populating the FDT */
    sprintf(nodename, "pci@%" PRIx64, phb->buid);
    bus_off = fdt_add_subnode(fdt, 0, nodename);
    if (bus_off < 0) {
        return bus_off;
    }

#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            return ret;                                            \
        }                                                          \
    } while (0)

    /* Write PHB properties */
    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));

    /* Build the interrupt-map, this must matches what is done
     * in pci_spapr_map_irq
     */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
    for (i = 0; i < PCI_SLOT_MAX; i++) {
        for (j = 0; j < PCI_NUM_PINS; j++) {
            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
            int lsi_num = pci_spapr_swizzle(i, j);

            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
            irqmap[1] = 0;
            irqmap[2] = 0;
            irqmap[3] = cpu_to_be32(j+1);
            irqmap[4] = cpu_to_be32(xics_phandle);
            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
            irqmap[6] = cpu_to_be32(0x8);
        }
    }
    /* Write interrupt map */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
                     sizeof(interrupt_map)));

    spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
                 phb->dma_liobn, phb->dma_window_start,
                 phb->dma_window_size);

    return 0;
}

void spapr_pci_rtas_init(void)
{
    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
    if (msi_supported) {
        spapr_rtas_register("ibm,query-interrupt-source-number",
                            rtas_ibm_query_interrupt_source_number);
        spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
    }
}

static void spapr_pci_register_types(void)
{
    type_register_static(&spapr_phb_info);
}

type_init(spapr_pci_register_types)