1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
/*
* QEMU Sparc SLAVIO timer controller emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sun4m.h"
#include "qemu-timer.h"
//#define DEBUG_TIMER
#ifdef DEBUG_TIMER
#define DPRINTF(fmt, args...) \
do { printf("TIMER: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
/*
* Registers of hardware timer in sun4m.
*
* This is the timer/counter part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
* are zero. Bit 31 is 1 when count has been reached.
*
* Per-CPU timers interrupt local CPU, system timer uses normal
* interrupt routing.
*
*/
#define MAX_CPUS 16
typedef struct SLAVIO_TIMERState {
qemu_irq irq;
ptimer_state *timer;
uint32_t count, counthigh, reached;
uint64_t limit;
// processor only
int running;
struct SLAVIO_TIMERState *master;
int slave_index;
// system only
unsigned int num_slaves;
struct SLAVIO_TIMERState *slave[MAX_CPUS];
uint32_t slave_mode;
} SLAVIO_TIMERState;
#define TIMER_MAXADDR 0x1f
#define SYS_TIMER_SIZE 0x14
#define CPU_TIMER_SIZE 0x10
#define SYS_TIMER_OFFSET 0x10000ULL
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
#define TIMER_LIMIT 0
#define TIMER_COUNTER 1
#define TIMER_COUNTER_NORST 2
#define TIMER_STATUS 3
#define TIMER_MODE 4
#define TIMER_COUNT_MASK32 0xfffffe00
#define TIMER_LIMIT_MASK32 0x7fffffff
#define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
#define TIMER_MAX_COUNT32 0x7ffffe00ULL
#define TIMER_REACHED 0x80000000
#define TIMER_PERIOD 500ULL // 500ns
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
#define PERIODS_TO_LIMIT(l) ((l) << 9)
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
{
return s->master && (s->master->slave_mode & (1 << s->slave_index));
}
// Update count, set irq, update expire_time
// Convert from ptimer countdown units
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
{
uint64_t count, limit;
if (s->limit == 0) /* free-run processor or system counter */
limit = TIMER_MAX_COUNT32;
else
limit = s->limit;
if (s->timer)
count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
else
count = 0;
DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
s->counthigh, s->count);
s->count = count & TIMER_COUNT_MASK32;
s->counthigh = count >> 32;
}
// timer callback
static void slavio_timer_irq(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
slavio_timer_get_out(s);
DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
s->reached = TIMER_REACHED;
if (!slavio_timer_is_user(s))
qemu_irq_raise(s->irq);
}
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr, ret;
saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) {
case TIMER_LIMIT:
// read limit (system counter mode) or read most signifying
// part of counter (user mode)
if (slavio_timer_is_user(s)) {
// read user timer MSW
slavio_timer_get_out(s);
ret = s->counthigh | s->reached;
} else {
// read limit
// clear irq
qemu_irq_lower(s->irq);
s->reached = 0;
ret = s->limit & TIMER_LIMIT_MASK32;
}
break;
case TIMER_COUNTER:
// read counter and reached bit (system mode) or read lsbits
// of counter (user mode)
slavio_timer_get_out(s);
if (slavio_timer_is_user(s)) // read user timer LSW
ret = s->count & TIMER_MAX_COUNT64;
else // read limit
ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
break;
case TIMER_STATUS:
// only available in processor counter/timer
// read start/stop status
ret = s->running;
break;
case TIMER_MODE:
// only available in system counter
// read user/system mode
ret = s->slave_mode;
break;
default:
DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
ret = 0;
break;
}
DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
return ret;
}
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr;
DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) {
case TIMER_LIMIT:
if (slavio_timer_is_user(s)) {
uint64_t count;
// set user counter MSW, reset counter
qemu_irq_lower(s->irq);
s->limit = TIMER_MAX_COUNT64;
s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
s->reached = 0;
count = ((uint64_t)s->counthigh << 32) | s->count;
DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
count);
if (s->timer) {
ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
}
} else {
// set limit, reset counter
qemu_irq_lower(s->irq);
s->limit = val & TIMER_MAX_COUNT32;
if (s->timer) {
if (s->limit == 0) /* free-run */
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
else
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
}
}
break;
case TIMER_COUNTER:
if (slavio_timer_is_user(s)) {
uint64_t count;
// set user counter LSW, reset counter
qemu_irq_lower(s->irq);
s->limit = TIMER_MAX_COUNT64;
s->count = val & TIMER_MAX_COUNT64;
s->reached = 0;
count = ((uint64_t)s->counthigh) << 32 | s->count;
DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
count);
if (s->timer) {
ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
}
} else
DPRINTF("not user timer\n");
break;
case TIMER_COUNTER_NORST:
// set limit without resetting counter
s->limit = val & TIMER_MAX_COUNT32;
if (s->timer) {
if (s->limit == 0) /* free-run */
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
else
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
}
break;
case TIMER_STATUS:
if (slavio_timer_is_user(s)) {
// start/stop user counter
if ((val & 1) && !s->running) {
DPRINTF("processor %d user timer started\n", s->slave_index);
if (s->timer)
ptimer_run(s->timer, 0);
s->running = 1;
} else if (!(val & 1) && s->running) {
DPRINTF("processor %d user timer stopped\n", s->slave_index);
if (s->timer)
ptimer_stop(s->timer);
s->running = 0;
}
}
break;
case TIMER_MODE:
if (s->master == NULL) {
unsigned int i;
for (i = 0; i < s->num_slaves; i++) {
if (val & (1 << i)) {
qemu_irq_lower(s->slave[i]->irq);
s->slave[i]->limit = -1ULL;
} else {
ptimer_stop(s->slave[i]->timer);
}
if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
ptimer_stop(s->slave[i]->timer);
ptimer_set_limit(s->slave[i]->timer,
LIMIT_TO_PERIODS(s->slave[i]->limit), 1);
DPRINTF("processor %d timer changed\n",
s->slave[i]->slave_index);
ptimer_run(s->slave[i]->timer, 0);
}
}
s->slave_mode = val & ((1 << s->num_slaves) - 1);
} else
DPRINTF("not system timer\n");
break;
default:
DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
break;
}
}
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
NULL,
NULL,
slavio_timer_mem_readl,
};
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
NULL,
NULL,
slavio_timer_mem_writel,
};
static void slavio_timer_save(QEMUFile *f, void *opaque)
{
SLAVIO_TIMERState *s = opaque;
qemu_put_be64s(f, &s->limit);
qemu_put_be32s(f, &s->count);
qemu_put_be32s(f, &s->counthigh);
qemu_put_be32s(f, &s->reached);
qemu_put_be32s(f, &s->running);
if (s->timer)
qemu_put_ptimer(f, s->timer);
}
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{
SLAVIO_TIMERState *s = opaque;
if (version_id != 3)
return -EINVAL;
qemu_get_be64s(f, &s->limit);
qemu_get_be32s(f, &s->count);
qemu_get_be32s(f, &s->counthigh);
qemu_get_be32s(f, &s->reached);
qemu_get_be32s(f, &s->running);
if (s->timer)
qemu_get_ptimer(f, s->timer);
return 0;
}
static void slavio_timer_reset(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
s->limit = 0;
s->count = 0;
s->reached = 0;
s->slave_mode = 0;
if (!s->master || s->slave_index < s->master->num_slaves) {
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
ptimer_run(s->timer, 0);
}
s->running = 1;
qemu_irq_lower(s->irq);
}
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
qemu_irq irq,
SLAVIO_TIMERState *master,
int slave_index)
{
int slavio_timer_io_memory;
SLAVIO_TIMERState *s;
QEMUBH *bh;
s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
if (!s)
return s;
s->irq = irq;
s->master = master;
s->slave_index = slave_index;
if (!master || slave_index < master->num_slaves) {
bh = qemu_bh_new(slavio_timer_irq, s);
s->timer = ptimer_init(bh);
ptimer_set_period(s->timer, TIMER_PERIOD);
}
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
slavio_timer_mem_write, s);
if (master)
cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
slavio_timer_io_memory);
else
cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
slavio_timer_io_memory);
register_savevm("slavio_timer", addr, 3, slavio_timer_save,
slavio_timer_load, s);
qemu_register_reset(slavio_timer_reset, s);
slavio_timer_reset(s);
return s;
}
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
qemu_irq *cpu_irqs, unsigned int num_cpus)
{
SLAVIO_TIMERState *master;
unsigned int i;
master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
master->num_slaves = num_cpus;
for (i = 0; i < MAX_CPUS; i++) {
master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
CPU_TIMER_OFFSET(i),
cpu_irqs[i], master, i);
}
}
|