1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
|
/*
* QEMU 16550A UART emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
* Copyright (c) 2008 Citrix Systems, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "qemu-char.h"
#include "isa.h"
#include "pc.h"
#include "qemu-timer.h"
//#define DEBUG_SERIAL
#define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
#define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
#define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
#define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
#define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
#define UART_IIR_NO_INT 0x01 /* No interrupts pending */
#define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
#define UART_IIR_MSI 0x00 /* Modem status interrupt */
#define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
#define UART_IIR_RDI 0x04 /* Receiver data interrupt */
#define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
#define UART_IIR_CTI 0x0C /* Character Timeout Indication */
#define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
#define UART_IIR_FE 0xC0 /* Fifo enabled */
/*
* These are the definitions for the Modem Control Register
*/
#define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
#define UART_MCR_OUT2 0x08 /* Out2 complement */
#define UART_MCR_OUT1 0x04 /* Out1 complement */
#define UART_MCR_RTS 0x02 /* RTS complement */
#define UART_MCR_DTR 0x01 /* DTR complement */
/*
* These are the definitions for the Modem Status Register
*/
#define UART_MSR_DCD 0x80 /* Data Carrier Detect */
#define UART_MSR_RI 0x40 /* Ring Indicator */
#define UART_MSR_DSR 0x20 /* Data Set Ready */
#define UART_MSR_CTS 0x10 /* Clear to Send */
#define UART_MSR_DDCD 0x08 /* Delta DCD */
#define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
#define UART_MSR_DDSR 0x02 /* Delta DSR */
#define UART_MSR_DCTS 0x01 /* Delta CTS */
#define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
#define UART_LSR_TEMT 0x40 /* Transmitter empty */
#define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
#define UART_LSR_BI 0x10 /* Break interrupt indicator */
#define UART_LSR_FE 0x08 /* Frame error indicator */
#define UART_LSR_PE 0x04 /* Parity error indicator */
#define UART_LSR_OE 0x02 /* Overrun error indicator */
#define UART_LSR_DR 0x01 /* Receiver data ready */
#define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
/* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
#define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
#define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
#define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
#define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
#define UART_FCR_DMS 0x08 /* DMA Mode Select */
#define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
#define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
#define UART_FCR_FE 0x01 /* FIFO Enable */
#define UART_FIFO_LENGTH 16 /* 16550A Fifo Length */
#define XMIT_FIFO 0
#define RECV_FIFO 1
#define MAX_XMIT_RETRY 4
struct SerialFIFO {
uint8_t data[UART_FIFO_LENGTH];
uint8_t count;
uint8_t itl; /* Interrupt Trigger Level */
uint8_t tail;
uint8_t head;
} typedef SerialFIFO;
struct SerialState {
uint16_t divider;
uint8_t rbr; /* receive register */
uint8_t thr; /* transmit holding register */
uint8_t tsr; /* transmit shift register */
uint8_t ier;
uint8_t iir; /* read only */
uint8_t lcr;
uint8_t mcr;
uint8_t lsr; /* read only */
uint8_t msr; /* read only */
uint8_t scr;
uint8_t fcr;
/* NOTE: this hidden state is necessary for tx irq generation as
it can be reset while reading iir */
int thr_ipending;
qemu_irq irq;
CharDriverState *chr;
int last_break_enable;
target_phys_addr_t base;
int it_shift;
int baudbase;
int tsr_retry;
uint64_t last_xmit_ts; /* Time when the last byte was successfully sent out of the tsr */
SerialFIFO recv_fifo;
SerialFIFO xmit_fifo;
struct QEMUTimer *fifo_timeout_timer;
int timeout_ipending; /* timeout interrupt pending state */
struct QEMUTimer *transmit_timer;
uint64_t char_transmit_time; /* time to transmit a char in ticks*/
int poll_msl;
struct QEMUTimer *modem_status_poll;
};
static void serial_receive1(void *opaque, const uint8_t *buf, int size);
static void fifo_clear(SerialState *s, int fifo)
{
SerialFIFO *f = (fifo) ? &s->recv_fifo : &s->xmit_fifo;
memset(f->data, 0, UART_FIFO_LENGTH);
f->count = 0;
f->head = 0;
f->tail = 0;
}
static int fifo_put(SerialState *s, int fifo, uint8_t chr)
{
SerialFIFO *f = (fifo) ? &s->recv_fifo : &s->xmit_fifo;
f->data[f->head++] = chr;
if (f->head == UART_FIFO_LENGTH)
f->head = 0;
f->count++;
return 1;
}
static uint8_t fifo_get(SerialState *s, int fifo)
{
SerialFIFO *f = (fifo) ? &s->recv_fifo : &s->xmit_fifo;
uint8_t c;
if(f->count == 0)
return 0;
c = f->data[f->tail++];
if (f->tail == UART_FIFO_LENGTH)
f->tail = 0;
f->count--;
return c;
}
static void serial_update_irq(SerialState *s)
{
uint8_t tmp_iir = UART_IIR_NO_INT;
if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
tmp_iir = UART_IIR_RLSI;
} else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
tmp_iir = UART_IIR_CTI;
} else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR)) {
if (!(s->fcr & UART_FCR_FE)) {
tmp_iir = UART_IIR_RDI;
} else if (s->recv_fifo.count >= s->recv_fifo.itl) {
tmp_iir = UART_IIR_RDI;
}
} else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
tmp_iir = UART_IIR_THRI;
} else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
tmp_iir = UART_IIR_MSI;
}
s->iir = tmp_iir | (s->iir & 0xF0);
if (tmp_iir != UART_IIR_NO_INT) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static void serial_update_parameters(SerialState *s)
{
int speed, parity, data_bits, stop_bits, frame_size;
QEMUSerialSetParams ssp;
if (s->divider == 0)
return;
frame_size = 1;
if (s->lcr & 0x08) {
if (s->lcr & 0x10)
parity = 'E';
else
parity = 'O';
} else {
parity = 'N';
frame_size = 0;
}
if (s->lcr & 0x04)
stop_bits = 2;
else
stop_bits = 1;
data_bits = (s->lcr & 0x03) + 5;
frame_size += data_bits + stop_bits;
speed = s->baudbase / s->divider;
ssp.speed = speed;
ssp.parity = parity;
ssp.data_bits = data_bits;
ssp.stop_bits = stop_bits;
s->char_transmit_time = (ticks_per_sec / speed) * frame_size;
qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
#if 0
printf("speed=%d parity=%c data=%d stop=%d\n",
speed, parity, data_bits, stop_bits);
#endif
}
static void serial_update_msl(SerialState *s)
{
uint8_t omsr;
int flags;
qemu_del_timer(s->modem_status_poll);
if (qemu_chr_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) {
s->poll_msl = -1;
return;
}
omsr = s->msr;
s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
if (s->msr != omsr) {
/* Set delta bits */
s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
/* UART_MSR_TERI only if change was from 1 -> 0 */
if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
s->msr &= ~UART_MSR_TERI;
serial_update_irq(s);
}
/* The real 16550A apparently has a 250ns response latency to line status changes.
We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
if (s->poll_msl)
qemu_mod_timer(s->modem_status_poll, qemu_get_clock(vm_clock) + ticks_per_sec / 100);
}
static void serial_xmit(void *opaque)
{
SerialState *s = opaque;
uint64_t new_xmit_ts = qemu_get_clock(vm_clock);
if (s->tsr_retry <= 0) {
if (s->fcr & UART_FCR_FE) {
s->tsr = fifo_get(s,XMIT_FIFO);
if (!s->xmit_fifo.count)
s->lsr |= UART_LSR_THRE;
} else {
s->tsr = s->thr;
s->lsr |= UART_LSR_THRE;
}
}
if (s->mcr & UART_MCR_LOOP) {
/* in loopback mode, say that we just received a char */
serial_receive1(s, &s->tsr, 1);
} else if (qemu_chr_write(s->chr, &s->tsr, 1) != 1) {
if ((s->tsr_retry > 0) && (s->tsr_retry <= MAX_XMIT_RETRY)) {
s->tsr_retry++;
qemu_mod_timer(s->transmit_timer, new_xmit_ts + s->char_transmit_time);
return;
} else if (s->poll_msl < 0) {
/* If we exceed MAX_XMIT_RETRY and the backend is not a real serial port, then
drop any further failed writes instantly, until we get one that goes through.
This is to prevent guests that log to unconnected pipes or pty's from stalling. */
s->tsr_retry = -1;
}
}
else {
s->tsr_retry = 0;
}
s->last_xmit_ts = qemu_get_clock(vm_clock);
if (!(s->lsr & UART_LSR_THRE))
qemu_mod_timer(s->transmit_timer, s->last_xmit_ts + s->char_transmit_time);
if (s->lsr & UART_LSR_THRE) {
s->lsr |= UART_LSR_TEMT;
s->thr_ipending = 1;
serial_update_irq(s);
}
}
static void serial_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
SerialState *s = opaque;
addr &= 7;
#ifdef DEBUG_SERIAL
printf("serial: write addr=0x%02x val=0x%02x\n", addr, val);
#endif
switch(addr) {
default:
case 0:
if (s->lcr & UART_LCR_DLAB) {
s->divider = (s->divider & 0xff00) | val;
serial_update_parameters(s);
} else {
s->thr = (uint8_t) val;
if(s->fcr & UART_FCR_FE) {
fifo_put(s, XMIT_FIFO, s->thr);
s->thr_ipending = 0;
s->lsr &= ~UART_LSR_TEMT;
s->lsr &= ~UART_LSR_THRE;
serial_update_irq(s);
} else {
s->thr_ipending = 0;
s->lsr &= ~UART_LSR_THRE;
serial_update_irq(s);
}
serial_xmit(s);
}
break;
case 1:
if (s->lcr & UART_LCR_DLAB) {
s->divider = (s->divider & 0x00ff) | (val << 8);
serial_update_parameters(s);
} else {
s->ier = val & 0x0f;
/* If the backend device is a real serial port, turn polling of the modem
status lines on physical port on or off depending on UART_IER_MSI state */
if (s->poll_msl >= 0) {
if (s->ier & UART_IER_MSI) {
s->poll_msl = 1;
serial_update_msl(s);
} else {
qemu_del_timer(s->modem_status_poll);
s->poll_msl = 0;
}
}
if (s->lsr & UART_LSR_THRE) {
s->thr_ipending = 1;
serial_update_irq(s);
}
}
break;
case 2:
val = val & 0xFF;
if (s->fcr == val)
break;
/* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
if ((val ^ s->fcr) & UART_FCR_FE)
val |= UART_FCR_XFR | UART_FCR_RFR;
/* FIFO clear */
if (val & UART_FCR_RFR) {
qemu_del_timer(s->fifo_timeout_timer);
s->timeout_ipending=0;
fifo_clear(s,RECV_FIFO);
}
if (val & UART_FCR_XFR) {
fifo_clear(s,XMIT_FIFO);
}
if (val & UART_FCR_FE) {
s->iir |= UART_IIR_FE;
/* Set RECV_FIFO trigger Level */
switch (val & 0xC0) {
case UART_FCR_ITL_1:
s->recv_fifo.itl = 1;
break;
case UART_FCR_ITL_2:
s->recv_fifo.itl = 4;
break;
case UART_FCR_ITL_3:
s->recv_fifo.itl = 8;
break;
case UART_FCR_ITL_4:
s->recv_fifo.itl = 14;
break;
}
} else
s->iir &= ~UART_IIR_FE;
/* Set fcr - or at least the bits in it that are supposed to "stick" */
s->fcr = val & 0xC9;
serial_update_irq(s);
break;
case 3:
{
int break_enable;
s->lcr = val;
serial_update_parameters(s);
break_enable = (val >> 6) & 1;
if (break_enable != s->last_break_enable) {
s->last_break_enable = break_enable;
qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
&break_enable);
}
}
break;
case 4:
{
int flags;
int old_mcr = s->mcr;
s->mcr = val & 0x1f;
if (val & UART_MCR_LOOP)
break;
if (s->poll_msl >= 0 && old_mcr != s->mcr) {
qemu_chr_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
if (val & UART_MCR_RTS)
flags |= CHR_TIOCM_RTS;
if (val & UART_MCR_DTR)
flags |= CHR_TIOCM_DTR;
qemu_chr_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
/* Update the modem status after a one-character-send wait-time, since there may be a response
from the device/computer at the other end of the serial line */
qemu_mod_timer(s->modem_status_poll, qemu_get_clock(vm_clock) + s->char_transmit_time);
}
}
break;
case 5:
break;
case 6:
break;
case 7:
s->scr = val;
break;
}
}
static uint32_t serial_ioport_read(void *opaque, uint32_t addr)
{
SerialState *s = opaque;
uint32_t ret;
addr &= 7;
switch(addr) {
default:
case 0:
if (s->lcr & UART_LCR_DLAB) {
ret = s->divider & 0xff;
} else {
if(s->fcr & UART_FCR_FE) {
ret = fifo_get(s,RECV_FIFO);
if (s->recv_fifo.count == 0)
s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
else
qemu_mod_timer(s->fifo_timeout_timer, qemu_get_clock (vm_clock) + s->char_transmit_time * 4);
s->timeout_ipending = 0;
} else {
ret = s->rbr;
s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
}
serial_update_irq(s);
if (!(s->mcr & UART_MCR_LOOP)) {
/* in loopback mode, don't receive any data */
qemu_chr_accept_input(s->chr);
}
}
break;
case 1:
if (s->lcr & UART_LCR_DLAB) {
ret = (s->divider >> 8) & 0xff;
} else {
ret = s->ier;
}
break;
case 2:
ret = s->iir;
s->thr_ipending = 0;
serial_update_irq(s);
break;
case 3:
ret = s->lcr;
break;
case 4:
ret = s->mcr;
break;
case 5:
ret = s->lsr;
/* Clear break interrupt */
if (s->lsr & UART_LSR_BI) {
s->lsr &= ~UART_LSR_BI;
serial_update_irq(s);
}
break;
case 6:
if (s->mcr & UART_MCR_LOOP) {
/* in loopback, the modem output pins are connected to the
inputs */
ret = (s->mcr & 0x0c) << 4;
ret |= (s->mcr & 0x02) << 3;
ret |= (s->mcr & 0x01) << 5;
} else {
if (s->poll_msl >= 0)
serial_update_msl(s);
ret = s->msr;
/* Clear delta bits & msr int after read, if they were set */
if (s->msr & UART_MSR_ANY_DELTA) {
s->msr &= 0xF0;
serial_update_irq(s);
}
}
break;
case 7:
ret = s->scr;
break;
}
#ifdef DEBUG_SERIAL
printf("serial: read addr=0x%02x val=0x%02x\n", addr, ret);
#endif
return ret;
}
static int serial_can_receive(SerialState *s)
{
if(s->fcr & UART_FCR_FE) {
if(s->recv_fifo.count < UART_FIFO_LENGTH)
/* Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1 if above. If UART_FIFO_LENGTH - fifo.count is
advertised the effect will be to almost always fill the fifo completely before the guest has a chance to respond,
effectively overriding the ITL that the guest has set. */
return (s->recv_fifo.count <= s->recv_fifo.itl) ? s->recv_fifo.itl - s->recv_fifo.count : 1;
else
return 0;
} else {
return !(s->lsr & UART_LSR_DR);
}
}
static void serial_receive_break(SerialState *s)
{
s->rbr = 0;
s->lsr |= UART_LSR_BI | UART_LSR_DR;
serial_update_irq(s);
}
/* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
static void fifo_timeout_int (void *opaque) {
SerialState *s = opaque;
if (s->recv_fifo.count) {
s->timeout_ipending = 1;
serial_update_irq(s);
}
}
static int serial_can_receive1(void *opaque)
{
SerialState *s = opaque;
return serial_can_receive(s);
}
static void serial_receive1(void *opaque, const uint8_t *buf, int size)
{
SerialState *s = opaque;
if(s->fcr & UART_FCR_FE) {
int i;
for (i = 0; i < size; i++) {
fifo_put(s, RECV_FIFO, buf[i]);
}
s->lsr |= UART_LSR_DR;
/* call the timeout receive callback in 4 char transmit time */
qemu_mod_timer(s->fifo_timeout_timer, qemu_get_clock (vm_clock) + s->char_transmit_time * 4);
} else {
s->rbr = buf[0];
s->lsr |= UART_LSR_DR;
}
serial_update_irq(s);
}
static void serial_event(void *opaque, int event)
{
SerialState *s = opaque;
#ifdef DEBUG_SERIAL
printf("serial: event %x\n", event);
#endif
if (event == CHR_EVENT_BREAK)
serial_receive_break(s);
}
static void serial_save(QEMUFile *f, void *opaque)
{
SerialState *s = opaque;
qemu_put_be16s(f,&s->divider);
qemu_put_8s(f,&s->rbr);
qemu_put_8s(f,&s->ier);
qemu_put_8s(f,&s->iir);
qemu_put_8s(f,&s->lcr);
qemu_put_8s(f,&s->mcr);
qemu_put_8s(f,&s->lsr);
qemu_put_8s(f,&s->msr);
qemu_put_8s(f,&s->scr);
qemu_put_8s(f,&s->fcr);
}
static int serial_load(QEMUFile *f, void *opaque, int version_id)
{
SerialState *s = opaque;
uint8_t fcr = 0;
if(version_id > 3)
return -EINVAL;
if (version_id >= 2)
qemu_get_be16s(f, &s->divider);
else
s->divider = qemu_get_byte(f);
qemu_get_8s(f,&s->rbr);
qemu_get_8s(f,&s->ier);
qemu_get_8s(f,&s->iir);
qemu_get_8s(f,&s->lcr);
qemu_get_8s(f,&s->mcr);
qemu_get_8s(f,&s->lsr);
qemu_get_8s(f,&s->msr);
qemu_get_8s(f,&s->scr);
if (version_id >= 3)
qemu_get_8s(f,&fcr);
/* Initialize fcr via setter to perform essential side-effects */
serial_ioport_write(s, 0x02, fcr);
return 0;
}
static void serial_reset(void *opaque)
{
SerialState *s = opaque;
s->rbr = 0;
s->ier = 0;
s->iir = UART_IIR_NO_INT;
s->lcr = 0;
s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
/* Default to 9600 baud, no parity, one stop bit */
s->divider = 0x0C;
s->mcr = UART_MCR_OUT2;
s->scr = 0;
s->tsr_retry = 0;
s->char_transmit_time = (ticks_per_sec / 9600) * 9;
s->poll_msl = 0;
fifo_clear(s,RECV_FIFO);
fifo_clear(s,XMIT_FIFO);
s->last_xmit_ts = qemu_get_clock(vm_clock);
s->thr_ipending = 0;
s->last_break_enable = 0;
qemu_irq_lower(s->irq);
}
static void serial_init_core(SerialState *s, qemu_irq irq, int baudbase,
CharDriverState *chr)
{
s->irq = irq;
s->baudbase = baudbase;
s->chr = chr;
s->modem_status_poll = qemu_new_timer(vm_clock, (QEMUTimerCB *) serial_update_msl, s);
s->fifo_timeout_timer = qemu_new_timer(vm_clock, (QEMUTimerCB *) fifo_timeout_int, s);
s->transmit_timer = qemu_new_timer(vm_clock, (QEMUTimerCB *) serial_xmit, s);
qemu_register_reset(serial_reset, s);
serial_reset(s);
}
/* If fd is zero, it means that the serial device uses the console */
SerialState *serial_init(int base, qemu_irq irq, int baudbase,
CharDriverState *chr)
{
SerialState *s;
s = qemu_mallocz(sizeof(SerialState));
if (!s)
return NULL;
serial_init_core(s, irq, baudbase, chr);
register_savevm("serial", base, 3, serial_save, serial_load, s);
register_ioport_write(base, 8, 1, serial_ioport_write, s);
register_ioport_read(base, 8, 1, serial_ioport_read, s);
qemu_chr_add_handlers(chr, serial_can_receive1, serial_receive1,
serial_event, s);
return s;
}
/* Memory mapped interface */
uint32_t serial_mm_readb (void *opaque, target_phys_addr_t addr)
{
SerialState *s = opaque;
return serial_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF;
}
void serial_mm_writeb (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
SerialState *s = opaque;
serial_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF);
}
uint32_t serial_mm_readw (void *opaque, target_phys_addr_t addr)
{
SerialState *s = opaque;
uint32_t val;
val = serial_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
return val;
}
void serial_mm_writew (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
SerialState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap16(value);
#endif
serial_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF);
}
uint32_t serial_mm_readl (void *opaque, target_phys_addr_t addr)
{
SerialState *s = opaque;
uint32_t val;
val = serial_ioport_read(s, (addr - s->base) >> s->it_shift);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
void serial_mm_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
SerialState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
serial_ioport_write(s, (addr - s->base) >> s->it_shift, value);
}
static CPUReadMemoryFunc *serial_mm_read[] = {
&serial_mm_readb,
&serial_mm_readw,
&serial_mm_readl,
};
static CPUWriteMemoryFunc *serial_mm_write[] = {
&serial_mm_writeb,
&serial_mm_writew,
&serial_mm_writel,
};
SerialState *serial_mm_init (target_phys_addr_t base, int it_shift,
qemu_irq irq, int baudbase,
CharDriverState *chr, int ioregister)
{
SerialState *s;
int s_io_memory;
s = qemu_mallocz(sizeof(SerialState));
if (!s)
return NULL;
s->base = base;
s->it_shift = it_shift;
serial_init_core(s, irq, baudbase, chr);
register_savevm("serial", base, 3, serial_save, serial_load, s);
if (ioregister) {
s_io_memory = cpu_register_io_memory(0, serial_mm_read,
serial_mm_write, s);
cpu_register_physical_memory(base, 8 << it_shift, s_io_memory);
}
qemu_chr_add_handlers(chr, serial_can_receive1, serial_receive1,
serial_event, s);
serial_update_msl(s);
return s;
}
|