aboutsummaryrefslogtreecommitdiff
path: root/hw/sd/sdhci.c
blob: 7f9d814706d7a8f9e6d0e7d1679b4e153abac6c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
/*
 * SD Association Host Standard Specification v2.0 controller emulation
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 * Mitsyanko Igor <i.mitsyanko@samsung.com>
 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
 *
 * Based on MMC controller for Samsung S5PC1xx-based board emulation
 * by Alexey Merkulov and Vladimir Monakhov.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include <inttypes.h>
#include "hw/hw.h"
#include "sysemu/block-backend.h"
#include "sysemu/blockdev.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"

#include "sdhci.h"

/* host controller debug messages */
#ifndef SDHC_DEBUG
#define SDHC_DEBUG                        0
#endif

#define DPRINT_L1(fmt, args...) \
    do { \
        if (SDHC_DEBUG) { \
            fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
        } \
    } while (0)
#define DPRINT_L2(fmt, args...) \
    do { \
        if (SDHC_DEBUG > 1) { \
            fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
        } \
    } while (0)
#define ERRPRINT(fmt, args...) \
    do { \
        if (SDHC_DEBUG) { \
            fprintf(stderr, "QEMU SDHC ERROR: " fmt, ## args); \
        } \
    } while (0)

/* Default SD/MMC host controller features information, which will be
 * presented in CAPABILITIES register of generic SD host controller at reset.
 * If not stated otherwise:
 * 0 - not supported, 1 - supported, other - prohibited.
 */
#define SDHC_CAPAB_64BITBUS       0ul        /* 64-bit System Bus Support */
#define SDHC_CAPAB_18V            1ul        /* Voltage support 1.8v */
#define SDHC_CAPAB_30V            0ul        /* Voltage support 3.0v */
#define SDHC_CAPAB_33V            1ul        /* Voltage support 3.3v */
#define SDHC_CAPAB_SUSPRESUME     0ul        /* Suspend/resume support */
#define SDHC_CAPAB_SDMA           1ul        /* SDMA support */
#define SDHC_CAPAB_HIGHSPEED      1ul        /* High speed support */
#define SDHC_CAPAB_ADMA1          1ul        /* ADMA1 support */
#define SDHC_CAPAB_ADMA2          1ul        /* ADMA2 support */
/* Maximum host controller R/W buffers size
 * Possible values: 512, 1024, 2048 bytes */
#define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
/* Maximum clock frequency for SDclock in MHz
 * value in range 10-63 MHz, 0 - not defined */
#define SDHC_CAPAB_BASECLKFREQ    52ul
#define SDHC_CAPAB_TOUNIT         1ul  /* Timeout clock unit 0 - kHz, 1 - MHz */
/* Timeout clock frequency 1-63, 0 - not defined */
#define SDHC_CAPAB_TOCLKFREQ      52ul

/* Now check all parameters and calculate CAPABILITIES REGISTER value */
#if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 ||     \
    SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 ||  \
    SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\
    SDHC_CAPAB_TOUNIT > 1
#error Capabilities features can have value 0 or 1 only!
#endif

#if SDHC_CAPAB_MAXBLOCKLENGTH == 512
#define MAX_BLOCK_LENGTH 0ul
#elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024
#define MAX_BLOCK_LENGTH 1ul
#elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048
#define MAX_BLOCK_LENGTH 2ul
#else
#error Max host controller block size can have value 512, 1024 or 2048 only!
#endif

#if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \
    SDHC_CAPAB_BASECLKFREQ > 63
#error SDclock frequency can have value in range 0, 10-63 only!
#endif

#if SDHC_CAPAB_TOCLKFREQ > 63
#error Timeout clock frequency can have value in range 0-63 only!
#endif

#define SDHC_CAPAB_REG_DEFAULT                                 \
   ((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) |     \
    (SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) |          \
    (SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) |  \
    (SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) |  \
    (SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) |      \
    (SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \
    (SDHC_CAPAB_TOCLKFREQ))

#define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))

static uint8_t sdhci_slotint(SDHCIState *s)
{
    return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
         ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
         ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
}

static inline void sdhci_update_irq(SDHCIState *s)
{
    qemu_set_irq(s->irq, sdhci_slotint(s));
}

static void sdhci_raise_insertion_irq(void *opaque)
{
    SDHCIState *s = (SDHCIState *)opaque;

    if (s->norintsts & SDHC_NIS_REMOVE) {
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
    } else {
        s->prnsts = 0x1ff0000;
        if (s->norintstsen & SDHC_NISEN_INSERT) {
            s->norintsts |= SDHC_NIS_INSERT;
        }
        sdhci_update_irq(s);
    }
}

static void sdhci_insert_eject_cb(void *opaque, int irq, int level)
{
    SDHCIState *s = (SDHCIState *)opaque;
    DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject");

    if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
        /* Give target some time to notice card ejection */
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
    } else {
        if (level) {
            s->prnsts = 0x1ff0000;
            if (s->norintstsen & SDHC_NISEN_INSERT) {
                s->norintsts |= SDHC_NIS_INSERT;
            }
        } else {
            s->prnsts = 0x1fa0000;
            s->pwrcon &= ~SDHC_POWER_ON;
            s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
            if (s->norintstsen & SDHC_NISEN_REMOVE) {
                s->norintsts |= SDHC_NIS_REMOVE;
            }
        }
        sdhci_update_irq(s);
    }
}

static void sdhci_card_readonly_cb(void *opaque, int irq, int level)
{
    SDHCIState *s = (SDHCIState *)opaque;

    if (level) {
        s->prnsts &= ~SDHC_WRITE_PROTECT;
    } else {
        /* Write enabled */
        s->prnsts |= SDHC_WRITE_PROTECT;
    }
}

static void sdhci_reset(SDHCIState *s)
{
    timer_del(s->insert_timer);
    timer_del(s->transfer_timer);
    /* Set all registers to 0. Capabilities registers are not cleared
     * and assumed to always preserve their value, given to them during
     * initialization */
    memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);

    sd_set_cb(s->card, s->ro_cb, s->eject_cb);
    s->data_count = 0;
    s->stopped_state = sdhc_not_stopped;
}

static void sdhci_data_transfer(void *opaque);

static void sdhci_send_command(SDHCIState *s)
{
    SDRequest request;
    uint8_t response[16];
    int rlen;

    s->errintsts = 0;
    s->acmd12errsts = 0;
    request.cmd = s->cmdreg >> 8;
    request.arg = s->argument;
    DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg);
    rlen = sd_do_command(s->card, &request, response);

    if (s->cmdreg & SDHC_CMD_RESPONSE) {
        if (rlen == 4) {
            s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
                           (response[2] << 8)  |  response[3];
            s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
            DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]);
        } else if (rlen == 16) {
            s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
                           (response[13] << 8) |  response[14];
            s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
                           (response[9] << 8)  |  response[10];
            s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
                           (response[5] << 8)  |  response[6];
            s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
                            response[2];
            DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.."
                  "64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n",
                  s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]);
        } else {
            ERRPRINT("Timeout waiting for command response\n");
            if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
                s->errintsts |= SDHC_EIS_CMDTIMEOUT;
                s->norintsts |= SDHC_NIS_ERR;
            }
        }

        if ((s->norintstsen & SDHC_NISEN_TRSCMP) &&
            (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
            s->norintsts |= SDHC_NIS_TRSCMP;
        }
    } else if (rlen != 0 && (s->errintstsen & SDHC_EISEN_CMDIDX)) {
        s->errintsts |= SDHC_EIS_CMDIDX;
        s->norintsts |= SDHC_NIS_ERR;
    }

    if (s->norintstsen & SDHC_NISEN_CMDCMP) {
        s->norintsts |= SDHC_NIS_CMDCMP;
    }

    sdhci_update_irq(s);

    if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
        s->data_count = 0;
        sdhci_data_transfer(s);
    }
}

static void sdhci_end_transfer(SDHCIState *s)
{
    /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
    if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
        SDRequest request;
        uint8_t response[16];

        request.cmd = 0x0C;
        request.arg = 0;
        DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg);
        sd_do_command(s->card, &request, response);
        /* Auto CMD12 response goes to the upper Response register */
        s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
                (response[2] << 8) | response[3];
    }

    s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
            SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
            SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);

    if (s->norintstsen & SDHC_NISEN_TRSCMP) {
        s->norintsts |= SDHC_NIS_TRSCMP;
    }

    sdhci_update_irq(s);
}

/*
 * Programmed i/o data transfer
 */

/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
static void sdhci_read_block_from_card(SDHCIState *s)
{
    int index = 0;

    if ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
        return;
    }

    for (index = 0; index < (s->blksize & 0x0fff); index++) {
        s->fifo_buffer[index] = sd_read_data(s->card);
    }

    /* New data now available for READ through Buffer Port Register */
    s->prnsts |= SDHC_DATA_AVAILABLE;
    if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
        s->norintsts |= SDHC_NIS_RBUFRDY;
    }

    /* Clear DAT line active status if that was the last block */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
    }

    /* If stop at block gap request was set and it's not the last block of
     * data - generate Block Event interrupt */
    if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt != 1)    {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
    }

    sdhci_update_irq(s);
}

/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
{
    uint32_t value = 0;
    int i;

    /* first check that a valid data exists in host controller input buffer */
    if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
        ERRPRINT("Trying to read from empty buffer\n");
        return 0;
    }

    for (i = 0; i < size; i++) {
        value |= s->fifo_buffer[s->data_count] << i * 8;
        s->data_count++;
        /* check if we've read all valid data (blksize bytes) from buffer */
        if ((s->data_count) >= (s->blksize & 0x0fff)) {
            DPRINT_L2("All %u bytes of data have been read from input buffer\n",
                    s->data_count);
            s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
            s->data_count = 0;  /* next buff read must start at position [0] */

            if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                s->blkcnt--;
            }

            /* if that was the last block of data */
            if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
                ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
                 /* stop at gap request */
                (s->stopped_state == sdhc_gap_read &&
                 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
                sdhci_end_transfer(s);
            } else { /* if there are more data, read next block from card */
                sdhci_read_block_from_card(s);
            }
            break;
        }
    }

    return value;
}

/* Write data from host controller FIFO to card */
static void sdhci_write_block_to_card(SDHCIState *s)
{
    int index = 0;

    if (s->prnsts & SDHC_SPACE_AVAILABLE) {
        if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
            s->norintsts |= SDHC_NIS_WBUFRDY;
        }
        sdhci_update_irq(s);
        return;
    }

    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
        if (s->blkcnt == 0) {
            return;
        } else {
            s->blkcnt--;
        }
    }

    for (index = 0; index < (s->blksize & 0x0fff); index++) {
        sd_write_data(s->card, s->fifo_buffer[index]);
    }

    /* Next data can be written through BUFFER DATORT register */
    s->prnsts |= SDHC_SPACE_AVAILABLE;

    /* Finish transfer if that was the last block of data */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
        sdhci_end_transfer(s);
    } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
        s->norintsts |= SDHC_NIS_WBUFRDY;
    }

    /* Generate Block Gap Event if requested and if not the last block */
    if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt > 0) {
        s->prnsts &= ~SDHC_DOING_WRITE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
        sdhci_end_transfer(s);
    }

    sdhci_update_irq(s);
}

/* Write @size bytes of @value data to host controller @s Buffer Data Port
 * register */
static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
{
    unsigned i;

    /* Check that there is free space left in a buffer */
    if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
        ERRPRINT("Can't write to data buffer: buffer full\n");
        return;
    }

    for (i = 0; i < size; i++) {
        s->fifo_buffer[s->data_count] = value & 0xFF;
        s->data_count++;
        value >>= 8;
        if (s->data_count >= (s->blksize & 0x0fff)) {
            DPRINT_L2("write buffer filled with %u bytes of data\n",
                    s->data_count);
            s->data_count = 0;
            s->prnsts &= ~SDHC_SPACE_AVAILABLE;
            if (s->prnsts & SDHC_DOING_WRITE) {
                sdhci_write_block_to_card(s);
            }
        }
    }
}

/*
 * Single DMA data transfer
 */

/* Multi block SDMA transfer */
static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
    bool page_aligned = false;
    unsigned int n, begin;
    const uint16_t block_size = s->blksize & 0x0fff;
    uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
    uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);

    /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
     * possible stop at page boundary if initial address is not page aligned,
     * allow them to work properly */
    if ((s->sdmasysad % boundary_chk) == 0) {
        page_aligned = true;
    }

    if (s->trnmod & SDHC_TRNS_READ) {
        s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            if (s->data_count == 0) {
                for (n = 0; n < block_size; n++) {
                    s->fifo_buffer[n] = sd_read_data(s->card);
                }
            }
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
            dma_memory_write(&address_space_memory, s->sdmasysad,
                             &s->fifo_buffer[begin], s->data_count - begin);
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                s->data_count = 0;
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    } else {
        s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
            }
            dma_memory_read(&address_space_memory, s->sdmasysad,
                            &s->fifo_buffer[begin], s->data_count);
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                for (n = 0; n < block_size; n++) {
                    sd_write_data(s->card, s->fifo_buffer[n]);
                }
                s->data_count = 0;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    }

    if (s->blkcnt == 0) {
        sdhci_end_transfer(s);
    } else {
        if (s->norintstsen & SDHC_NISEN_DMA) {
            s->norintsts |= SDHC_NIS_DMA;
        }
        sdhci_update_irq(s);
    }
}

/* single block SDMA transfer */

static void sdhci_sdma_transfer_single_block(SDHCIState *s)
{
    int n;
    uint32_t datacnt = s->blksize & 0x0fff;

    if (s->trnmod & SDHC_TRNS_READ) {
        for (n = 0; n < datacnt; n++) {
            s->fifo_buffer[n] = sd_read_data(s->card);
        }
        dma_memory_write(&address_space_memory, s->sdmasysad, s->fifo_buffer,
                         datacnt);
    } else {
        dma_memory_read(&address_space_memory, s->sdmasysad, s->fifo_buffer,
                        datacnt);
        for (n = 0; n < datacnt; n++) {
            sd_write_data(s->card, s->fifo_buffer[n]);
        }
    }

    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
        s->blkcnt--;
    }

    sdhci_end_transfer(s);
}

typedef struct ADMADescr {
    hwaddr addr;
    uint16_t length;
    uint8_t attr;
    uint8_t incr;
} ADMADescr;

static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
{
    uint32_t adma1 = 0;
    uint64_t adma2 = 0;
    hwaddr entry_addr = (hwaddr)s->admasysaddr;
    switch (SDHC_DMA_TYPE(s->hostctl)) {
    case SDHC_CTRL_ADMA2_32:
        dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma2,
                        sizeof(adma2));
        adma2 = le64_to_cpu(adma2);
        /* The spec does not specify endianness of descriptor table.
         * We currently assume that it is LE.
         */
        dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
        dscr->length = (uint16_t)extract64(adma2, 16, 16);
        dscr->attr = (uint8_t)extract64(adma2, 0, 7);
        dscr->incr = 8;
        break;
    case SDHC_CTRL_ADMA1_32:
        dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma1,
                        sizeof(adma1));
        adma1 = le32_to_cpu(adma1);
        dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
        dscr->attr = (uint8_t)extract32(adma1, 0, 7);
        dscr->incr = 4;
        if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
            dscr->length = (uint16_t)extract32(adma1, 12, 16);
        } else {
            dscr->length = 4096;
        }
        break;
    case SDHC_CTRL_ADMA2_64:
        dma_memory_read(&address_space_memory, entry_addr,
                        (uint8_t *)(&dscr->attr), 1);
        dma_memory_read(&address_space_memory, entry_addr + 2,
                        (uint8_t *)(&dscr->length), 2);
        dscr->length = le16_to_cpu(dscr->length);
        dma_memory_read(&address_space_memory, entry_addr + 4,
                        (uint8_t *)(&dscr->addr), 8);
        dscr->attr = le64_to_cpu(dscr->attr);
        dscr->attr &= 0xfffffff8;
        dscr->incr = 12;
        break;
    }
}

/* Advanced DMA data transfer */

static void sdhci_do_adma(SDHCIState *s)
{
    unsigned int n, begin, length;
    const uint16_t block_size = s->blksize & 0x0fff;
    ADMADescr dscr;
    int i;

    for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
        s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;

        get_adma_description(s, &dscr);
        DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n",
                dscr.addr, dscr.length, dscr.attr);

        if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
            /* Indicate that error occurred in ST_FDS state */
            s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
            s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;

            /* Generate ADMA error interrupt */
            if (s->errintstsen & SDHC_EISEN_ADMAERR) {
                s->errintsts |= SDHC_EIS_ADMAERR;
                s->norintsts |= SDHC_NIS_ERR;
            }

            sdhci_update_irq(s);
            return;
        }

        length = dscr.length ? dscr.length : 65536;

        switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
        case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */

            if (s->trnmod & SDHC_TRNS_READ) {
                while (length) {
                    if (s->data_count == 0) {
                        for (n = 0; n < block_size; n++) {
                            s->fifo_buffer[n] = sd_read_data(s->card);
                        }
                    }
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
                    dma_memory_write(&address_space_memory, dscr.addr,
                                     &s->fifo_buffer[begin],
                                     s->data_count - begin);
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            } else {
                while (length) {
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
                    dma_memory_read(&address_space_memory, dscr.addr,
                                    &s->fifo_buffer[begin],
                                    s->data_count - begin);
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        for (n = 0; n < block_size; n++) {
                            sd_write_data(s->card, s->fifo_buffer[n]);
                        }
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            }
            s->admasysaddr += dscr.incr;
            break;
        case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
            s->admasysaddr = dscr.addr;
            DPRINT_L1("ADMA link: admasysaddr=0x%" PRIx64 "\n",
                      s->admasysaddr);
            break;
        default:
            s->admasysaddr += dscr.incr;
            break;
        }

        if (dscr.attr & SDHC_ADMA_ATTR_INT) {
            DPRINT_L1("ADMA interrupt: admasysaddr=0x%" PRIx64 "\n",
                      s->admasysaddr);
            if (s->norintstsen & SDHC_NISEN_DMA) {
                s->norintsts |= SDHC_NIS_DMA;
            }

            sdhci_update_irq(s);
        }

        /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
        if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                    (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
            DPRINT_L2("ADMA transfer completed\n");
            if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
                (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                s->blkcnt != 0)) {
                ERRPRINT("SD/MMC host ADMA length mismatch\n");
                s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
                        SDHC_ADMAERR_STATE_ST_TFR;
                if (s->errintstsen & SDHC_EISEN_ADMAERR) {
                    ERRPRINT("Set ADMA error flag\n");
                    s->errintsts |= SDHC_EIS_ADMAERR;
                    s->norintsts |= SDHC_NIS_ERR;
                }

                sdhci_update_irq(s);
            }
            sdhci_end_transfer(s);
            return;
        }

    }

    /* we have unfinished business - reschedule to continue ADMA */
    timer_mod(s->transfer_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
}

/* Perform data transfer according to controller configuration */

static void sdhci_data_transfer(void *opaque)
{
    SDHCIState *s = (SDHCIState *)opaque;

    if (s->trnmod & SDHC_TRNS_DMA) {
        switch (SDHC_DMA_TYPE(s->hostctl)) {
        case SDHC_CTRL_SDMA:
            if ((s->trnmod & SDHC_TRNS_MULTI) &&
                    (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) {
                break;
            }

            if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
                sdhci_sdma_transfer_single_block(s);
            } else {
                sdhci_sdma_transfer_multi_blocks(s);
            }

            break;
        case SDHC_CTRL_ADMA1_32:
            if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
                ERRPRINT("ADMA1 not supported\n");
                break;
            }

            sdhci_do_adma(s);
            break;
        case SDHC_CTRL_ADMA2_32:
            if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
                ERRPRINT("ADMA2 not supported\n");
                break;
            }

            sdhci_do_adma(s);
            break;
        case SDHC_CTRL_ADMA2_64:
            if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
                    !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
                ERRPRINT("64 bit ADMA not supported\n");
                break;
            }

            sdhci_do_adma(s);
            break;
        default:
            ERRPRINT("Unsupported DMA type\n");
            break;
        }
    } else {
        if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) {
            s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                    SDHC_DAT_LINE_ACTIVE;
            sdhci_read_block_from_card(s);
        } else {
            s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
                    SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
            sdhci_write_block_to_card(s);
        }
    }
}

static bool sdhci_can_issue_command(SDHCIState *s)
{
    if (!SDHC_CLOCK_IS_ON(s->clkcon) || !(s->pwrcon & SDHC_POWER_ON) ||
        (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
        ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
        ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
        !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
        return false;
    }

    return true;
}

/* The Buffer Data Port register must be accessed in sequential and
 * continuous manner */
static inline bool
sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
{
    if ((s->data_count & 0x3) != byte_num) {
        ERRPRINT("Non-sequential access to Buffer Data Port register"
                "is prohibited\n");
        return false;
    }
    return true;
}

static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
{
    SDHCIState *s = (SDHCIState *)opaque;
    uint32_t ret = 0;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        ret = s->sdmasysad;
        break;
    case SDHC_BLKSIZE:
        ret = s->blksize | (s->blkcnt << 16);
        break;
    case SDHC_ARGUMENT:
        ret = s->argument;
        break;
    case SDHC_TRNMOD:
        ret = s->trnmod | (s->cmdreg << 16);
        break;
    case SDHC_RSPREG0 ... SDHC_RSPREG3:
        ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
            ret = sdhci_read_dataport(s, size);
            DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset,
                      ret, ret);
            return ret;
        }
        break;
    case SDHC_PRNSTS:
        ret = s->prnsts;
        break;
    case SDHC_HOSTCTL:
        ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
              (s->wakcon << 24);
        break;
    case SDHC_CLKCON:
        ret = s->clkcon | (s->timeoutcon << 16);
        break;
    case SDHC_NORINTSTS:
        ret = s->norintsts | (s->errintsts << 16);
        break;
    case SDHC_NORINTSTSEN:
        ret = s->norintstsen | (s->errintstsen << 16);
        break;
    case SDHC_NORINTSIGEN:
        ret = s->norintsigen | (s->errintsigen << 16);
        break;
    case SDHC_ACMD12ERRSTS:
        ret = s->acmd12errsts;
        break;
    case SDHC_CAPAREG:
        ret = s->capareg;
        break;
    case SDHC_MAXCURR:
        ret = s->maxcurr;
        break;
    case SDHC_ADMAERR:
        ret =  s->admaerr;
        break;
    case SDHC_ADMASYSADDR:
        ret = (uint32_t)s->admasysaddr;
        break;
    case SDHC_ADMASYSADDR + 4:
        ret = (uint32_t)(s->admasysaddr >> 32);
        break;
    case SDHC_SLOT_INT_STATUS:
        ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
        break;
    default:
        ERRPRINT("bad %ub read: addr[0x%04x]\n", size, (int)offset);
        break;
    }

    ret >>= (offset & 0x3) * 8;
    ret &= (1ULL << (size * 8)) - 1;
    DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset, ret, ret);
    return ret;
}

static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
{
    if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
        return;
    }
    s->blkgap = value & SDHC_STOP_AT_GAP_REQ;

    if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
            (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
        if (s->stopped_state == sdhc_gap_read) {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
            sdhci_read_block_from_card(s);
        } else {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
            sdhci_write_block_to_card(s);
        }
        s->stopped_state = sdhc_not_stopped;
    } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
        if (s->prnsts & SDHC_DOING_READ) {
            s->stopped_state = sdhc_gap_read;
        } else if (s->prnsts & SDHC_DOING_WRITE) {
            s->stopped_state = sdhc_gap_write;
        }
    }
}

static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
    switch (value) {
    case SDHC_RESET_ALL:
        sdhci_reset(s);
        break;
    case SDHC_RESET_CMD:
        s->prnsts &= ~SDHC_CMD_INHIBIT;
        s->norintsts &= ~SDHC_NIS_CMDCMP;
        break;
    case SDHC_RESET_DATA:
        s->data_count = 0;
        s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
                SDHC_DOING_READ | SDHC_DOING_WRITE |
                SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
        s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
        s->stopped_state = sdhc_not_stopped;
        s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
                SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
        break;
    }
}

static void
sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
    SDHCIState *s = (SDHCIState *)opaque;
    unsigned shift =  8 * (offset & 0x3);
    uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
    uint32_t value = val;
    value <<= shift;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        s->sdmasysad = (s->sdmasysad & mask) | value;
        MASKED_WRITE(s->sdmasysad, mask, value);
        /* Writing to last byte of sdmasysad might trigger transfer */
        if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
                s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
            sdhci_sdma_transfer_multi_blocks(s);
        }
        break;
    case SDHC_BLKSIZE:
        if (!TRANSFERRING_DATA(s->prnsts)) {
            MASKED_WRITE(s->blksize, mask, value);
            MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
        }
        break;
    case SDHC_ARGUMENT:
        MASKED_WRITE(s->argument, mask, value);
        break;
    case SDHC_TRNMOD:
        /* DMA can be enabled only if it is supported as indicated by
         * capabilities register */
        if (!(s->capareg & SDHC_CAN_DO_DMA)) {
            value &= ~SDHC_TRNS_DMA;
        }
        MASKED_WRITE(s->trnmod, mask, value);
        MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);

        /* Writing to the upper byte of CMDREG triggers SD command generation */
        if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
            break;
        }

        sdhci_send_command(s);
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
            sdhci_write_dataport(s, value >> shift, size);
        }
        break;
    case SDHC_HOSTCTL:
        if (!(mask & 0xFF0000)) {
            sdhci_blkgap_write(s, value >> 16);
        }
        MASKED_WRITE(s->hostctl, mask, value);
        MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
        MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
        if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
                !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
            s->pwrcon &= ~SDHC_POWER_ON;
        }
        break;
    case SDHC_CLKCON:
        if (!(mask & 0xFF000000)) {
            sdhci_reset_write(s, value >> 24);
        }
        MASKED_WRITE(s->clkcon, mask, value);
        MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
        if (s->clkcon & SDHC_CLOCK_INT_EN) {
            s->clkcon |= SDHC_CLOCK_INT_STABLE;
        } else {
            s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
        }
        break;
    case SDHC_NORINTSTS:
        if (s->norintstsen & SDHC_NISEN_CARDINT) {
            value &= ~SDHC_NIS_CARDINT;
        }
        s->norintsts &= mask | ~value;
        s->errintsts &= (mask >> 16) | ~(value >> 16);
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSTSEN:
        MASKED_WRITE(s->norintstsen, mask, value);
        MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
        s->norintsts &= s->norintstsen;
        s->errintsts &= s->errintstsen;
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSIGEN:
        MASKED_WRITE(s->norintsigen, mask, value);
        MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
        sdhci_update_irq(s);
        break;
    case SDHC_ADMAERR:
        MASKED_WRITE(s->admaerr, mask, value);
        break;
    case SDHC_ADMASYSADDR:
        s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
                (uint64_t)mask)) | (uint64_t)value;
        break;
    case SDHC_ADMASYSADDR + 4:
        s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
                ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
        break;
    case SDHC_FEAER:
        s->acmd12errsts |= value;
        s->errintsts |= (value >> 16) & s->errintstsen;
        if (s->acmd12errsts) {
            s->errintsts |= SDHC_EIS_CMD12ERR;
        }
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
    default:
        ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n",
                 size, (int)offset, value >> shift, value >> shift);
        break;
    }
    DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n",
              size, (int)offset, value >> shift, value >> shift);
}

static const MemoryRegionOps sdhci_mmio_ops = {
    .read = sdhci_read,
    .write = sdhci_write,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
{
    switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) {
    case 0:
        return 512;
    case 1:
        return 1024;
    case 2:
        return 2048;
    default:
        hw_error("SDHC: unsupported value for maximum block size\n");
        return 0;
    }
}

static void sdhci_initfn(SDHCIState *s, BlockBackend *blk)
{
    s->card = sd_init(blk, false);
    if (s->card == NULL) {
        exit(1);
    }
    s->eject_cb = qemu_allocate_irq(sdhci_insert_eject_cb, s, 0);
    s->ro_cb = qemu_allocate_irq(sdhci_card_readonly_cb, s, 0);
    sd_set_cb(s->card, s->ro_cb, s->eject_cb);

    s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
    s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
}

static void sdhci_uninitfn(SDHCIState *s)
{
    timer_del(s->insert_timer);
    timer_free(s->insert_timer);
    timer_del(s->transfer_timer);
    timer_free(s->transfer_timer);
    qemu_free_irq(s->eject_cb);
    qemu_free_irq(s->ro_cb);

    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
}

const VMStateDescription sdhci_vmstate = {
    .name = "sdhci",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(sdmasysad, SDHCIState),
        VMSTATE_UINT16(blksize, SDHCIState),
        VMSTATE_UINT16(blkcnt, SDHCIState),
        VMSTATE_UINT32(argument, SDHCIState),
        VMSTATE_UINT16(trnmod, SDHCIState),
        VMSTATE_UINT16(cmdreg, SDHCIState),
        VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
        VMSTATE_UINT32(prnsts, SDHCIState),
        VMSTATE_UINT8(hostctl, SDHCIState),
        VMSTATE_UINT8(pwrcon, SDHCIState),
        VMSTATE_UINT8(blkgap, SDHCIState),
        VMSTATE_UINT8(wakcon, SDHCIState),
        VMSTATE_UINT16(clkcon, SDHCIState),
        VMSTATE_UINT8(timeoutcon, SDHCIState),
        VMSTATE_UINT8(admaerr, SDHCIState),
        VMSTATE_UINT16(norintsts, SDHCIState),
        VMSTATE_UINT16(errintsts, SDHCIState),
        VMSTATE_UINT16(norintstsen, SDHCIState),
        VMSTATE_UINT16(errintstsen, SDHCIState),
        VMSTATE_UINT16(norintsigen, SDHCIState),
        VMSTATE_UINT16(errintsigen, SDHCIState),
        VMSTATE_UINT16(acmd12errsts, SDHCIState),
        VMSTATE_UINT16(data_count, SDHCIState),
        VMSTATE_UINT64(admasysaddr, SDHCIState),
        VMSTATE_UINT8(stopped_state, SDHCIState),
        VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, 0, buf_maxsz),
        VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
        VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
        VMSTATE_END_OF_LIST()
    }
};

/* Capabilities registers provide information on supported features of this
 * specific host controller implementation */
static Property sdhci_pci_properties[] = {
    DEFINE_BLOCK_PROPERTIES(SDHCIState, conf),
    DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
            SDHC_CAPAB_REG_DEFAULT),
    DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
    DEFINE_PROP_END_OF_LIST(),
};

static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
{
    SDHCIState *s = PCI_SDHCI(dev);
    dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
    dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
    sdhci_initfn(s, s->conf.blk);
    s->buf_maxsz = sdhci_get_fifolen(s);
    s->fifo_buffer = g_malloc0(s->buf_maxsz);
    s->irq = pci_allocate_irq(dev);
    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
            SDHC_REGISTERS_MAP_SIZE);
    pci_register_bar(dev, 0, 0, &s->iomem);
}

static void sdhci_pci_exit(PCIDevice *dev)
{
    SDHCIState *s = PCI_SDHCI(dev);
    sdhci_uninitfn(s);
}

static void sdhci_pci_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);

    k->realize = sdhci_pci_realize;
    k->exit = sdhci_pci_exit;
    k->vendor_id = PCI_VENDOR_ID_REDHAT;
    k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
    k->class_id = PCI_CLASS_SYSTEM_SDHCI;
    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
    dc->vmsd = &sdhci_vmstate;
    dc->props = sdhci_pci_properties;
}

static const TypeInfo sdhci_pci_info = {
    .name = TYPE_PCI_SDHCI,
    .parent = TYPE_PCI_DEVICE,
    .instance_size = sizeof(SDHCIState),
    .class_init = sdhci_pci_class_init,
};

static Property sdhci_sysbus_properties[] = {
    DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
            SDHC_CAPAB_REG_DEFAULT),
    DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
    DEFINE_PROP_END_OF_LIST(),
};

static void sdhci_sysbus_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
    DriveInfo *di;

    /* FIXME use a qdev drive property instead of drive_get_next() */
    di = drive_get_next(IF_SD);
    sdhci_initfn(s, di ? blk_by_legacy_dinfo(di) : NULL);
}

static void sdhci_sysbus_finalize(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
    sdhci_uninitfn(s);
}

static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
{
    SDHCIState *s = SYSBUS_SDHCI(dev);
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);

    s->buf_maxsz = sdhci_get_fifolen(s);
    s->fifo_buffer = g_malloc0(s->buf_maxsz);
    sysbus_init_irq(sbd, &s->irq);
    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
            SDHC_REGISTERS_MAP_SIZE);
    sysbus_init_mmio(sbd, &s->iomem);
}

static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->vmsd = &sdhci_vmstate;
    dc->props = sdhci_sysbus_properties;
    dc->realize = sdhci_sysbus_realize;
    /* Reason: instance_init() method uses drive_get_next() */
    dc->cannot_instantiate_with_device_add_yet = true;
}

static const TypeInfo sdhci_sysbus_info = {
    .name = TYPE_SYSBUS_SDHCI,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(SDHCIState),
    .instance_init = sdhci_sysbus_init,
    .instance_finalize = sdhci_sysbus_finalize,
    .class_init = sdhci_sysbus_class_init,
};

static void sdhci_register_types(void)
{
    type_register_static(&sdhci_pci_info);
    type_register_static(&sdhci_sysbus_info);
}

type_init(sdhci_register_types)