1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
|
/*
* Intel XScale PXA255/270 processor support.
*
* Copyright (c) 2006 Openedhand Ltd.
* Written by Andrzej Zaborowski <balrog@zabor.org>
*
* This code is licenced under the GPL.
*/
# include "vl.h"
static struct {
target_phys_addr_t io_base;
int irqn;
} pxa255_serial[] = {
{ 0x40100000, PXA2XX_PIC_FFUART },
{ 0x40200000, PXA2XX_PIC_BTUART },
{ 0x40700000, PXA2XX_PIC_STUART },
{ 0x41600000, PXA25X_PIC_HWUART },
{ 0, 0 }
}, pxa270_serial[] = {
{ 0x40100000, PXA2XX_PIC_FFUART },
{ 0x40200000, PXA2XX_PIC_BTUART },
{ 0x40700000, PXA2XX_PIC_STUART },
{ 0, 0 }
};
static struct {
target_phys_addr_t io_base;
int irqn;
} pxa250_ssp[] = {
{ 0x41000000, PXA2XX_PIC_SSP },
{ 0, 0 }
}, pxa255_ssp[] = {
{ 0x41000000, PXA2XX_PIC_SSP },
{ 0x41400000, PXA25X_PIC_NSSP },
{ 0, 0 }
}, pxa26x_ssp[] = {
{ 0x41000000, PXA2XX_PIC_SSP },
{ 0x41400000, PXA25X_PIC_NSSP },
{ 0x41500000, PXA26X_PIC_ASSP },
{ 0, 0 }
}, pxa27x_ssp[] = {
{ 0x41000000, PXA2XX_PIC_SSP },
{ 0x41700000, PXA27X_PIC_SSP2 },
{ 0x41900000, PXA2XX_PIC_SSP3 },
{ 0, 0 }
};
#define PMCR 0x00 /* Power Manager Control register */
#define PSSR 0x04 /* Power Manager Sleep Status register */
#define PSPR 0x08 /* Power Manager Scratch-Pad register */
#define PWER 0x0c /* Power Manager Wake-Up Enable register */
#define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
#define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
#define PEDR 0x18 /* Power Manager Edge-Detect Status register */
#define PCFR 0x1c /* Power Manager General Configuration register */
#define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
#define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
#define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
#define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
#define RCSR 0x30 /* Reset Controller Status register */
#define PSLR 0x34 /* Power Manager Sleep Configuration register */
#define PTSR 0x38 /* Power Manager Standby Configuration register */
#define PVCR 0x40 /* Power Manager Voltage Change Control register */
#define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
#define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
#define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
#define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
#define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->pm_base;
switch (addr) {
case PMCR ... PCMD31:
if (addr & 3)
goto fail;
return s->pm_regs[addr >> 2];
default:
fail:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->pm_base;
switch (addr) {
case PMCR:
s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
s->pm_regs[addr >> 2] |= value & 0x15;
break;
case PSSR: /* Read-clean registers */
case RCSR:
case PKSR:
s->pm_regs[addr >> 2] &= ~value;
break;
default: /* Read-write registers */
if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
s->pm_regs[addr >> 2] = value;
break;
}
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
}
static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
pxa2xx_pm_read,
pxa2xx_pm_read,
pxa2xx_pm_read,
};
static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
pxa2xx_pm_write,
pxa2xx_pm_write,
pxa2xx_pm_write,
};
#define CCCR 0x00 /* Core Clock Configuration register */
#define CKEN 0x04 /* Clock Enable register */
#define OSCC 0x08 /* Oscillator Configuration register */
#define CCSR 0x0c /* Core Clock Status register */
static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->cm_base;
switch (addr) {
case CCCR:
case CKEN:
case OSCC:
return s->cm_regs[addr >> 2];
case CCSR:
return s->cm_regs[CCCR >> 2] | (3 << 28);
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->cm_base;
switch (addr) {
case CCCR:
case CKEN:
s->cm_regs[addr >> 2] = value;
break;
case OSCC:
s->cm_regs[addr >> 2] &= ~0x6e;
s->cm_regs[addr >> 2] |= value & 0x6e;
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
}
static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
pxa2xx_cm_read,
pxa2xx_cm_read,
pxa2xx_cm_read,
};
static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
pxa2xx_cm_write,
pxa2xx_cm_write,
pxa2xx_cm_write,
};
static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
switch (reg) {
case 6: /* Clock Configuration register */
return s->clkcfg;
case 7: /* Power Mode register */
return 0;
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
return 0;
}
static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
static const char *pwrmode[8] = {
"Normal", "Idle", "Deep-idle", "Standby",
"Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
};
switch (reg) {
case 6: /* Clock Configuration register */
s->clkcfg = value & 0xf;
if (value & 2)
printf("%s: CPU frequency change attempt\n", __FUNCTION__);
break;
case 7: /* Power Mode register */
if (value & 8)
printf("%s: CPU voltage change attempt\n", __FUNCTION__);
switch (value & 7) {
case 0:
/* Do nothing */
break;
case 1:
/* Idle */
if (!(s->cm_regs[CCCR] & (1 << 31))) { /* CPDIS */
cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
break;
}
/* Fall through. */
case 2:
/* Deep-Idle */
cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
goto message;
case 3:
cpu_reset(s->env);
s->env->cp15.c1_sys = 0;
s->env->cp15.c1_coproc = 0;
s->env->cp15.c2 = 0;
s->env->cp15.c3 = 0;
s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
/*
* The scratch-pad register is almost universally used
* for storing the return address on suspend. For the
* lack of a resuming bootloader, perform a jump
* directly to that address.
*/
memset(s->env->regs, 0, 4 * 15);
s->env->regs[15] = s->pm_regs[PSPR >> 2];
#if 0
buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
cpu_physical_memory_write(0, &buffer, 4);
buffer = s->pm_regs[PSPR >> 2];
cpu_physical_memory_write(8, &buffer, 4);
#endif
/* Suspend */
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
goto message;
default:
message:
printf("%s: machine entered %s mode\n", __FUNCTION__,
pwrmode[value & 7]);
}
break;
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
}
/* Performace Monitoring Registers */
#define CPPMNC 0 /* Performance Monitor Control register */
#define CPCCNT 1 /* Clock Counter register */
#define CPINTEN 4 /* Interrupt Enable register */
#define CPFLAG 5 /* Overflow Flag register */
#define CPEVTSEL 8 /* Event Selection register */
#define CPPMN0 0 /* Performance Count register 0 */
#define CPPMN1 1 /* Performance Count register 1 */
#define CPPMN2 2 /* Performance Count register 2 */
#define CPPMN3 3 /* Performance Count register 3 */
static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
switch (reg) {
case CPPMNC:
return s->pmnc;
case CPCCNT:
if (s->pmnc & 1)
return qemu_get_clock(vm_clock);
else
return 0;
case CPINTEN:
case CPFLAG:
case CPEVTSEL:
return 0;
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
return 0;
}
static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
switch (reg) {
case CPPMNC:
s->pmnc = value;
break;
case CPCCNT:
case CPINTEN:
case CPFLAG:
case CPEVTSEL:
break;
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
}
static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
{
switch (crm) {
case 0:
return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
case 1:
return pxa2xx_perf_read(opaque, op2, reg, crm);
case 2:
switch (reg) {
case CPPMN0:
case CPPMN1:
case CPPMN2:
case CPPMN3:
return 0;
}
/* Fall through */
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
return 0;
}
static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
uint32_t value)
{
switch (crm) {
case 0:
pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
break;
case 1:
pxa2xx_perf_write(opaque, op2, reg, crm, value);
break;
case 2:
switch (reg) {
case CPPMN0:
case CPPMN1:
case CPPMN2:
case CPPMN3:
return;
}
/* Fall through */
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
}
#define MDCNFG 0x00 /* SDRAM Configuration register */
#define MDREFR 0x04 /* SDRAM Refresh Control register */
#define MSC0 0x08 /* Static Memory Control register 0 */
#define MSC1 0x0c /* Static Memory Control register 1 */
#define MSC2 0x10 /* Static Memory Control register 2 */
#define MECR 0x14 /* Expansion Memory Bus Config register */
#define SXCNFG 0x1c /* Synchronous Static Memory Config register */
#define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
#define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
#define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
#define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
#define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
#define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
#define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
#define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
#define ARB_CNTL 0x48 /* Arbiter Control register */
#define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
#define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
#define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
#define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
#define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
#define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
#define SA1110 0x64 /* SA-1110 Memory Compatibility register */
static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->mm_base;
switch (addr) {
case MDCNFG ... SA1110:
if ((addr & 3) == 0)
return s->mm_regs[addr >> 2];
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->mm_base;
switch (addr) {
case MDCNFG ... SA1110:
if ((addr & 3) == 0) {
s->mm_regs[addr >> 2] = value;
break;
}
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
}
static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
pxa2xx_mm_read,
pxa2xx_mm_read,
pxa2xx_mm_read,
};
static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
pxa2xx_mm_write,
pxa2xx_mm_write,
pxa2xx_mm_write,
};
/* Synchronous Serial Ports */
struct pxa2xx_ssp_s {
target_phys_addr_t base;
qemu_irq irq;
int enable;
uint32_t sscr[2];
uint32_t sspsp;
uint32_t ssto;
uint32_t ssitr;
uint32_t sssr;
uint8_t sstsa;
uint8_t ssrsa;
uint8_t ssacd;
uint32_t rx_fifo[16];
int rx_level;
int rx_start;
uint32_t (*readfn)(void *opaque);
void (*writefn)(void *opaque, uint32_t value);
void *opaque;
};
#define SSCR0 0x00 /* SSP Control register 0 */
#define SSCR1 0x04 /* SSP Control register 1 */
#define SSSR 0x08 /* SSP Status register */
#define SSITR 0x0c /* SSP Interrupt Test register */
#define SSDR 0x10 /* SSP Data register */
#define SSTO 0x28 /* SSP Time-Out register */
#define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
#define SSTSA 0x30 /* SSP TX Time Slot Active register */
#define SSRSA 0x34 /* SSP RX Time Slot Active register */
#define SSTSS 0x38 /* SSP Time Slot Status register */
#define SSACD 0x3c /* SSP Audio Clock Divider register */
/* Bitfields for above registers */
#define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
#define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
#define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
#define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
#define SSCR0_SSE (1 << 7)
#define SSCR0_RIM (1 << 22)
#define SSCR0_TIM (1 << 23)
#define SSCR0_MOD (1 << 31)
#define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
#define SSCR1_RIE (1 << 0)
#define SSCR1_TIE (1 << 1)
#define SSCR1_LBM (1 << 2)
#define SSCR1_MWDS (1 << 5)
#define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
#define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
#define SSCR1_EFWR (1 << 14)
#define SSCR1_PINTE (1 << 18)
#define SSCR1_TINTE (1 << 19)
#define SSCR1_RSRE (1 << 20)
#define SSCR1_TSRE (1 << 21)
#define SSCR1_EBCEI (1 << 29)
#define SSITR_INT (7 << 5)
#define SSSR_TNF (1 << 2)
#define SSSR_RNE (1 << 3)
#define SSSR_TFS (1 << 5)
#define SSSR_RFS (1 << 6)
#define SSSR_ROR (1 << 7)
#define SSSR_PINT (1 << 18)
#define SSSR_TINT (1 << 19)
#define SSSR_EOC (1 << 20)
#define SSSR_TUR (1 << 21)
#define SSSR_BCE (1 << 23)
#define SSSR_RW 0x00bc0080
static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
{
int level = 0;
level |= s->ssitr & SSITR_INT;
level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
qemu_set_irq(s->irq, !!level);
}
static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
{
s->sssr &= ~(0xf << 12); /* Clear RFL */
s->sssr &= ~(0xf << 8); /* Clear TFL */
s->sssr &= ~SSSR_TNF;
if (s->enable) {
s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
s->sssr |= SSSR_RFS;
else
s->sssr &= ~SSSR_RFS;
if (0 <= SSCR1_TFT(s->sscr[1]))
s->sssr |= SSSR_TFS;
else
s->sssr &= ~SSSR_TFS;
if (s->rx_level)
s->sssr |= SSSR_RNE;
else
s->sssr &= ~SSSR_RNE;
s->sssr |= SSSR_TNF;
}
pxa2xx_ssp_int_update(s);
}
static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
uint32_t retval;
addr -= s->base;
switch (addr) {
case SSCR0:
return s->sscr[0];
case SSCR1:
return s->sscr[1];
case SSPSP:
return s->sspsp;
case SSTO:
return s->ssto;
case SSITR:
return s->ssitr;
case SSSR:
return s->sssr | s->ssitr;
case SSDR:
if (!s->enable)
return 0xffffffff;
if (s->rx_level < 1) {
printf("%s: SSP Rx Underrun\n", __FUNCTION__);
return 0xffffffff;
}
s->rx_level --;
retval = s->rx_fifo[s->rx_start ++];
s->rx_start &= 0xf;
pxa2xx_ssp_fifo_update(s);
return retval;
case SSTSA:
return s->sstsa;
case SSRSA:
return s->ssrsa;
case SSTSS:
return 0;
case SSACD:
return s->ssacd;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
addr -= s->base;
switch (addr) {
case SSCR0:
s->sscr[0] = value & 0xc7ffffff;
s->enable = value & SSCR0_SSE;
if (value & SSCR0_MOD)
printf("%s: Attempt to use network mode\n", __FUNCTION__);
if (s->enable && SSCR0_DSS(value) < 4)
printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
SSCR0_DSS(value));
if (!(value & SSCR0_SSE)) {
s->sssr = 0;
s->ssitr = 0;
s->rx_level = 0;
}
pxa2xx_ssp_fifo_update(s);
break;
case SSCR1:
s->sscr[1] = value;
if (value & (SSCR1_LBM | SSCR1_EFWR))
printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
pxa2xx_ssp_fifo_update(s);
break;
case SSPSP:
s->sspsp = value;
break;
case SSTO:
s->ssto = value;
break;
case SSITR:
s->ssitr = value & SSITR_INT;
pxa2xx_ssp_int_update(s);
break;
case SSSR:
s->sssr &= ~(value & SSSR_RW);
pxa2xx_ssp_int_update(s);
break;
case SSDR:
if (SSCR0_UWIRE(s->sscr[0])) {
if (s->sscr[1] & SSCR1_MWDS)
value &= 0xffff;
else
value &= 0xff;
} else
/* Note how 32bits overflow does no harm here */
value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
/* Data goes from here to the Tx FIFO and is shifted out from
* there directly to the slave, no need to buffer it.
*/
if (s->enable) {
if (s->writefn)
s->writefn(s->opaque, value);
if (s->rx_level < 0x10) {
if (s->readfn)
s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
s->readfn(s->opaque);
else
s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
} else
s->sssr |= SSSR_ROR;
}
pxa2xx_ssp_fifo_update(s);
break;
case SSTSA:
s->sstsa = value;
break;
case SSRSA:
s->ssrsa = value;
break;
case SSACD:
s->ssacd = value;
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
}
void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
uint32_t (*readfn)(void *opaque),
void (*writefn)(void *opaque, uint32_t value), void *opaque)
{
if (!port) {
printf("%s: no such SSP\n", __FUNCTION__);
exit(-1);
}
port->opaque = opaque;
port->readfn = readfn;
port->writefn = writefn;
}
static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
pxa2xx_ssp_read,
pxa2xx_ssp_read,
pxa2xx_ssp_read,
};
static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
pxa2xx_ssp_write,
pxa2xx_ssp_write,
pxa2xx_ssp_write,
};
/* Real-Time Clock */
#define RCNR 0x00 /* RTC Counter register */
#define RTAR 0x04 /* RTC Alarm register */
#define RTSR 0x08 /* RTC Status register */
#define RTTR 0x0c /* RTC Timer Trim register */
#define RDCR 0x10 /* RTC Day Counter register */
#define RYCR 0x14 /* RTC Year Counter register */
#define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
#define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
#define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
#define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
#define SWCR 0x28 /* RTC Stopwatch Counter register */
#define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
#define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
#define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
#define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
{
qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
}
static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
{
int64_t rt = qemu_get_clock(rt_clock);
s->last_rcnr += ((rt - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
s->last_rdcr += ((rt - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
s->last_hz = rt;
}
static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
{
int64_t rt = qemu_get_clock(rt_clock);
if (s->rtsr & (1 << 12))
s->last_swcr += (rt - s->last_sw) / 10;
s->last_sw = rt;
}
static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
{
int64_t rt = qemu_get_clock(rt_clock);
if (s->rtsr & (1 << 15))
s->last_swcr += rt - s->last_pi;
s->last_pi = rt;
}
static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
uint32_t rtsr)
{
if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
qemu_mod_timer(s->rtc_hz, s->last_hz +
(((s->rtar - s->last_rcnr) * 1000 *
((s->rttr & 0xffff) + 1)) >> 15));
else
qemu_del_timer(s->rtc_hz);
if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
qemu_mod_timer(s->rtc_rdal1, s->last_hz +
(((s->rdar1 - s->last_rdcr) * 1000 *
((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
else
qemu_del_timer(s->rtc_rdal1);
if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
qemu_mod_timer(s->rtc_rdal2, s->last_hz +
(((s->rdar2 - s->last_rdcr) * 1000 *
((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
else
qemu_del_timer(s->rtc_rdal2);
if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
qemu_mod_timer(s->rtc_swal1, s->last_sw +
(s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
else
qemu_del_timer(s->rtc_swal1);
if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
qemu_mod_timer(s->rtc_swal2, s->last_sw +
(s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
else
qemu_del_timer(s->rtc_swal2);
if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
qemu_mod_timer(s->rtc_pi, s->last_pi +
(s->piar & 0xffff) - s->last_rtcpicr);
else
qemu_del_timer(s->rtc_pi);
}
static inline void pxa2xx_rtc_hz_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 0);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 4);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 6);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 8);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 10);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_pi_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 13);
pxa2xx_rtc_piupdate(s);
s->last_rtcpicr = 0;
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->rtc_base;
switch (addr) {
case RTTR:
return s->rttr;
case RTSR:
return s->rtsr;
case RTAR:
return s->rtar;
case RDAR1:
return s->rdar1;
case RDAR2:
return s->rdar2;
case RYAR1:
return s->ryar1;
case RYAR2:
return s->ryar2;
case SWAR1:
return s->swar1;
case SWAR2:
return s->swar2;
case PIAR:
return s->piar;
case RCNR:
return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
case RDCR:
return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
case RYCR:
return s->last_rycr;
case SWCR:
if (s->rtsr & (1 << 12))
return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
else
return s->last_swcr;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->rtc_base;
switch (addr) {
case RTTR:
if (!(s->rttr & (1 << 31))) {
pxa2xx_rtc_hzupdate(s);
s->rttr = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
}
break;
case RTSR:
if ((s->rtsr ^ value) & (1 << 15))
pxa2xx_rtc_piupdate(s);
if ((s->rtsr ^ value) & (1 << 12))
pxa2xx_rtc_swupdate(s);
if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
pxa2xx_rtc_alarm_update(s, value);
s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
pxa2xx_rtc_int_update(s);
break;
case RTAR:
s->rtar = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RDAR1:
s->rdar1 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RDAR2:
s->rdar2 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RYAR1:
s->ryar1 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RYAR2:
s->ryar2 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case SWAR1:
pxa2xx_rtc_swupdate(s);
s->swar1 = value;
s->last_swcr = 0;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case SWAR2:
s->swar2 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case PIAR:
s->piar = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RCNR:
pxa2xx_rtc_hzupdate(s);
s->last_rcnr = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RDCR:
pxa2xx_rtc_hzupdate(s);
s->last_rdcr = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RYCR:
s->last_rycr = value;
break;
case SWCR:
pxa2xx_rtc_swupdate(s);
s->last_swcr = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RTCPICR:
pxa2xx_rtc_piupdate(s);
s->last_rtcpicr = value & 0xffff;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
}
}
static void pxa2xx_rtc_reset(struct pxa2xx_state_s *s)
{
struct tm *tm;
time_t ti;
int wom;
s->rttr = 0x7fff;
s->rtsr = 0;
time(&ti);
if (rtc_utc)
tm = gmtime(&ti);
else
tm = localtime(&ti);
wom = ((tm->tm_mday - 1) / 7) + 1;
s->last_rcnr = (uint32_t) ti;
s->last_rdcr = (wom << 20) | ((tm->tm_wday + 1) << 17) |
(tm->tm_hour << 12) | (tm->tm_min << 6) | tm->tm_sec;
s->last_rycr = ((tm->tm_year + 1900) << 9) |
((tm->tm_mon + 1) << 5) | tm->tm_mday;
s->last_swcr = (tm->tm_hour << 19) |
(tm->tm_min << 13) | (tm->tm_sec << 7);
s->last_rtcpicr = 0;
s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
}
static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
pxa2xx_rtc_read,
pxa2xx_rtc_read,
pxa2xx_rtc_read,
};
static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
pxa2xx_rtc_write,
pxa2xx_rtc_write,
pxa2xx_rtc_write,
};
/* PXA Inter-IC Sound Controller */
static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
{
i2s->rx_len = 0;
i2s->tx_len = 0;
i2s->fifo_len = 0;
i2s->clk = 0x1a;
i2s->control[0] = 0x00;
i2s->control[1] = 0x00;
i2s->status = 0x00;
i2s->mask = 0x00;
}
#define SACR_TFTH(val) ((val >> 8) & 0xf)
#define SACR_RFTH(val) ((val >> 12) & 0xf)
#define SACR_DREC(val) (val & (1 << 3))
#define SACR_DPRL(val) (val & (1 << 4))
static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
{
int rfs, tfs;
rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
!SACR_DREC(i2s->control[1]);
tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
i2s->enable && !SACR_DPRL(i2s->control[1]);
pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
i2s->status &= 0xe0;
if (i2s->rx_len)
i2s->status |= 1 << 1; /* RNE */
if (i2s->enable)
i2s->status |= 1 << 2; /* BSY */
if (tfs)
i2s->status |= 1 << 3; /* TFS */
if (rfs)
i2s->status |= 1 << 4; /* RFS */
if (!(i2s->tx_len && i2s->enable))
i2s->status |= i2s->fifo_len << 8; /* TFL */
i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
}
#define SACR0 0x00 /* Serial Audio Global Control register */
#define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
#define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
#define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
#define SAICR 0x18 /* Serial Audio Interrupt Clear register */
#define SADIV 0x60 /* Serial Audio Clock Divider register */
#define SADR 0x80 /* Serial Audio Data register */
static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
addr -= s->base;
switch (addr) {
case SACR0:
return s->control[0];
case SACR1:
return s->control[1];
case SASR0:
return s->status;
case SAIMR:
return s->mask;
case SAICR:
return 0;
case SADIV:
return s->clk;
case SADR:
if (s->rx_len > 0) {
s->rx_len --;
pxa2xx_i2s_update(s);
return s->codec_in(s->opaque);
}
return 0;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
uint32_t *sample;
addr -= s->base;
switch (addr) {
case SACR0:
if (value & (1 << 3)) /* RST */
pxa2xx_i2s_reset(s);
s->control[0] = value & 0xff3d;
if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
s->codec_out(s->opaque, *sample);
s->status &= ~(1 << 7); /* I2SOFF */
}
if (value & (1 << 4)) /* EFWR */
printf("%s: Attempt to use special function\n", __FUNCTION__);
s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
pxa2xx_i2s_update(s);
break;
case SACR1:
s->control[1] = value & 0x0039;
if (value & (1 << 5)) /* ENLBF */
printf("%s: Attempt to use loopback function\n", __FUNCTION__);
if (value & (1 << 4)) /* DPRL */
s->fifo_len = 0;
pxa2xx_i2s_update(s);
break;
case SAIMR:
s->mask = value & 0x0078;
pxa2xx_i2s_update(s);
break;
case SAICR:
s->status &= ~(value & (3 << 5));
pxa2xx_i2s_update(s);
break;
case SADIV:
s->clk = value & 0x007f;
break;
case SADR:
if (s->tx_len && s->enable) {
s->tx_len --;
pxa2xx_i2s_update(s);
s->codec_out(s->opaque, value);
} else if (s->fifo_len < 16) {
s->fifo[s->fifo_len ++] = value;
pxa2xx_i2s_update(s);
}
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
}
}
static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
pxa2xx_i2s_read,
pxa2xx_i2s_read,
pxa2xx_i2s_read,
};
static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
pxa2xx_i2s_write,
pxa2xx_i2s_write,
pxa2xx_i2s_write,
};
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
{
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
uint32_t *sample;
/* Signal FIFO errors */
if (s->enable && s->tx_len)
s->status |= 1 << 5; /* TUR */
if (s->enable && s->rx_len)
s->status |= 1 << 6; /* ROR */
/* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
* handle the cases where it makes a difference. */
s->tx_len = tx - s->fifo_len;
s->rx_len = rx;
/* Note that is s->codec_out wasn't set, we wouldn't get called. */
if (s->enable)
for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
s->codec_out(s->opaque, *sample);
pxa2xx_i2s_update(s);
}
static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
qemu_irq irq, struct pxa2xx_dma_state_s *dma)
{
int iomemtype;
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
s->base = base;
s->irq = irq;
s->dma = dma;
s->data_req = pxa2xx_i2s_data_req;
pxa2xx_i2s_reset(s);
iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
pxa2xx_i2s_writefn, s);
cpu_register_physical_memory(s->base & 0xfff00000, 0xfffff, iomemtype);
return s;
}
/* PXA Fast Infra-red Communications Port */
struct pxa2xx_fir_s {
target_phys_addr_t base;
qemu_irq irq;
struct pxa2xx_dma_state_s *dma;
int enable;
CharDriverState *chr;
uint8_t control[3];
uint8_t status[2];
int rx_len;
int rx_start;
uint8_t rx_fifo[64];
};
static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
{
s->control[0] = 0x00;
s->control[1] = 0x00;
s->control[2] = 0x00;
s->status[0] = 0x00;
s->status[1] = 0x00;
s->enable = 0;
}
static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
{
static const int tresh[4] = { 8, 16, 32, 0 };
int intr = 0;
if ((s->control[0] & (1 << 4)) && /* RXE */
s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
s->status[0] |= 1 << 4; /* RFS */
else
s->status[0] &= ~(1 << 4); /* RFS */
if (s->control[0] & (1 << 3)) /* TXE */
s->status[0] |= 1 << 3; /* TFS */
else
s->status[0] &= ~(1 << 3); /* TFS */
if (s->rx_len)
s->status[1] |= 1 << 2; /* RNE */
else
s->status[1] &= ~(1 << 2); /* RNE */
if (s->control[0] & (1 << 4)) /* RXE */
s->status[1] |= 1 << 0; /* RSY */
else
s->status[1] &= ~(1 << 0); /* RSY */
intr |= (s->control[0] & (1 << 5)) && /* RIE */
(s->status[0] & (1 << 4)); /* RFS */
intr |= (s->control[0] & (1 << 6)) && /* TIE */
(s->status[0] & (1 << 3)); /* TFS */
intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
(s->status[0] & (1 << 6)); /* EOC */
intr |= (s->control[0] & (1 << 2)) && /* TUS */
(s->status[0] & (1 << 1)); /* TUR */
intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
qemu_set_irq(s->irq, intr && s->enable);
}
#define ICCR0 0x00 /* FICP Control register 0 */
#define ICCR1 0x04 /* FICP Control register 1 */
#define ICCR2 0x08 /* FICP Control register 2 */
#define ICDR 0x0c /* FICP Data register */
#define ICSR0 0x14 /* FICP Status register 0 */
#define ICSR1 0x18 /* FICP Status register 1 */
#define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
uint8_t ret;
addr -= s->base;
switch (addr) {
case ICCR0:
return s->control[0];
case ICCR1:
return s->control[1];
case ICCR2:
return s->control[2];
case ICDR:
s->status[0] &= ~0x01;
s->status[1] &= ~0x72;
if (s->rx_len) {
s->rx_len --;
ret = s->rx_fifo[s->rx_start ++];
s->rx_start &= 63;
pxa2xx_fir_update(s);
return ret;
}
printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
break;
case ICSR0:
return s->status[0];
case ICSR1:
return s->status[1] | (1 << 3); /* TNF */
case ICFOR:
return s->rx_len;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
uint8_t ch;
addr -= s->base;
switch (addr) {
case ICCR0:
s->control[0] = value;
if (!(value & (1 << 4))) /* RXE */
s->rx_len = s->rx_start = 0;
if (!(value & (1 << 3))) /* TXE */
/* Nop */;
s->enable = value & 1; /* ITR */
if (!s->enable)
s->status[0] = 0;
pxa2xx_fir_update(s);
break;
case ICCR1:
s->control[1] = value;
break;
case ICCR2:
s->control[2] = value & 0x3f;
pxa2xx_fir_update(s);
break;
case ICDR:
if (s->control[2] & (1 << 2)) /* TXP */
ch = value;
else
ch = ~value;
if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
qemu_chr_write(s->chr, &ch, 1);
break;
case ICSR0:
s->status[0] &= ~(value & 0x66);
pxa2xx_fir_update(s);
break;
case ICFOR:
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
}
}
static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
pxa2xx_fir_read,
pxa2xx_fir_read,
pxa2xx_fir_read,
};
static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
pxa2xx_fir_write,
pxa2xx_fir_write,
pxa2xx_fir_write,
};
static int pxa2xx_fir_is_empty(void *opaque)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
return (s->rx_len < 64);
}
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
if (!(s->control[0] & (1 << 4))) /* RXE */
return;
while (size --) {
s->status[1] |= 1 << 4; /* EOF */
if (s->rx_len >= 64) {
s->status[1] |= 1 << 6; /* ROR */
break;
}
if (s->control[2] & (1 << 3)) /* RXP */
s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
else
s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
}
pxa2xx_fir_update(s);
}
static void pxa2xx_fir_event(void *opaque, int event)
{
}
static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
qemu_irq irq, struct pxa2xx_dma_state_s *dma,
CharDriverState *chr)
{
int iomemtype;
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
qemu_mallocz(sizeof(struct pxa2xx_fir_s));
s->base = base;
s->irq = irq;
s->dma = dma;
s->chr = chr;
pxa2xx_fir_reset(s);
iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
pxa2xx_fir_writefn, s);
cpu_register_physical_memory(s->base, 0xfff, iomemtype);
if (chr)
qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
pxa2xx_fir_rx, pxa2xx_fir_event, s);
return s;
}
void pxa2xx_reset(int line, int level, void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
cpu_reset(s->env);
/* TODO: reset peripherals */
}
}
/* Initialise a PXA270 integrated chip (ARM based core). */
struct pxa2xx_state_s *pxa270_init(DisplayState *ds, const char *revision)
{
struct pxa2xx_state_s *s;
struct pxa2xx_ssp_s *ssp;
int iomemtype, i;
s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
if (revision && strncmp(revision, "pxa27", 5)) {
fprintf(stderr, "Machine requires a PXA27x processor.\n");
exit(1);
}
s->env = cpu_init();
cpu_arm_set_model(s->env, revision ?: "pxa270");
s->pic = pxa2xx_pic_init(0x40d00000, s->env);
s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
s->pic[PXA27X_PIC_OST_4_11], s->env);
s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma);
for (i = 0; pxa270_serial[i].io_base; i ++)
if (serial_hds[i])
serial_mm_init(pxa270_serial[i].io_base, 2,
s->pic[pxa270_serial[i].irqn], serial_hds[i], 1);
else
break;
if (serial_hds[i])
s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
s->dma, serial_hds[i]);
if (ds)
s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
s->cm_base = 0x41300000;
s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */
s->clkcfg = 0x00000009; /* Turbo mode active */
iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
pxa2xx_cm_writefn, s);
cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype);
cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
s->mm_base = 0x48000000;
s->mm_regs[MDMRS >> 2] = 0x00020002;
s->mm_regs[MDREFR >> 2] = 0x03ca4000;
s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
pxa2xx_mm_writefn, s);
cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype);
for (i = 0; pxa27x_ssp[i].io_base; i ++);
s->ssp = (struct pxa2xx_ssp_s **)
qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
ssp = (struct pxa2xx_ssp_s *)
qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
for (i = 0; pxa27x_ssp[i].io_base; i ++) {
s->ssp[i] = &ssp[i];
ssp[i].base = pxa27x_ssp[i].io_base;
ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
pxa2xx_ssp_writefn, &ssp[i]);
cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype);
}
if (usb_enabled) {
usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
}
s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
s->rtc_base = 0x40900000;
iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
pxa2xx_rtc_writefn, s);
cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype);
pxa2xx_rtc_reset(s);
s->pm_base = 0x40f00000;
iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
pxa2xx_pm_writefn, s);
cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype);
s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
/* GPIO1 resets the processor */
/* The handler can be overriden by board-specific code */
pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);
return s;
}
/* Initialise a PXA255 integrated chip (ARM based core). */
struct pxa2xx_state_s *pxa255_init(DisplayState *ds)
{
struct pxa2xx_state_s *s;
struct pxa2xx_ssp_s *ssp;
int iomemtype, i;
s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
s->env = cpu_init();
cpu_arm_set_model(s->env, "pxa255");
s->pic = pxa2xx_pic_init(0x40d00000, s->env);
s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0], s->env);
s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma);
for (i = 0; pxa255_serial[i].io_base; i ++)
if (serial_hds[i])
serial_mm_init(pxa255_serial[i].io_base, 2,
s->pic[pxa255_serial[i].irqn], serial_hds[i], 1);
else
break;
if (serial_hds[i])
s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
s->dma, serial_hds[i]);
if (ds)
s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
s->cm_base = 0x41300000;
s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */
s->clkcfg = 0x00000009; /* Turbo mode active */
iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
pxa2xx_cm_writefn, s);
cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype);
cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
s->mm_base = 0x48000000;
s->mm_regs[MDMRS >> 2] = 0x00020002;
s->mm_regs[MDREFR >> 2] = 0x03ca4000;
s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
pxa2xx_mm_writefn, s);
cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype);
for (i = 0; pxa255_ssp[i].io_base; i ++);
s->ssp = (struct pxa2xx_ssp_s **)
qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
ssp = (struct pxa2xx_ssp_s *)
qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
for (i = 0; pxa255_ssp[i].io_base; i ++) {
s->ssp[i] = &ssp[i];
ssp[i].base = pxa255_ssp[i].io_base;
ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
pxa2xx_ssp_writefn, &ssp[i]);
cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype);
}
if (usb_enabled) {
usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
}
s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
s->rtc_base = 0x40900000;
iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
pxa2xx_rtc_writefn, s);
cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype);
pxa2xx_rtc_reset(s);
s->pm_base = 0x40f00000;
iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
pxa2xx_pm_writefn, s);
cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype);
s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
/* GPIO1 resets the processor */
/* The handler can be overriden by board-specific code */
pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);
return s;
}
|